
Unifying Code Refactorings of Different Languages
Introduction of CHAST and using Parser Generators as Refactoring Meta Language

Raphael Jenni
OST Eastern Switzerland University of Applied Sciences

Supervised by Prof. Dr. Farhad Mehta
FT 2022

Abstract
In this paper, the newly developed tool CHAST will be in-
troduced, a tool that automates refactorings in a secure and
reliable manner by using the concept of change isolation.
This allows users to preview and confirm changes before
they are applied to the actual codebase, avoiding unintended
side effects and enabling users to easily roll back changes if
necessary. CHAST is designed to be language-agnostic and
to support a wide range of tools and functionality. It also
simplifies the process of creating and sharing refactorings by
providing a command-line interface and recipe format. The
paper furthermore investigates the feasibility of implement-
ing multi-language refactorings using parser generators as a
refactoring meta language. It also evaluates CHAST in terms
of change isolation and the effort required to create a refac-
toring. In future work, plans exist to continue developing
CHAST and further enhancing its effectiveness in real-world
scenarios. Therefore, CHAST’s limits need to be explored,
and potential trade-offs of using parser generators as a refac-
toring meta language need to be identified. Furthermore,
other approaches for implementing multi-language refactor-
ings need to be investigated. There also exist plans to add
additional features to CHAST, such as installing software or
running linters and formatters in a unified way.

Keywords: Refactoring, Parser Generators, Automation, AST
Manipulation, Code Generation

1 Introduction
In every software project, the need for refactoring emerges
sooner or later. Refactoring is understood as the process of
restructuring existing computer code without changing its
observable behavior. It is intended to improve the design,
structure, and/or implementation of the software (or a part of
it) to make it moremaintainable, scalable, and efficient. Refac-
toring is a well-known technique in software engineering
and is widely used in practice. However, much refactoring
work is still done manually, which is time-consuming and
error-prone. Many refactorings turn out to be repetitive and
very similar to one another. Some refactorings may be auto-
mated and aided by integrated development environments
(IDEs). For others, no automated support is available. Some
projects aim to provide automated support for refactoring
but are often limited to a specific language or a specific refac-
toring. If the same automation exists for a different language,

it is most likely a completely different implementation, shar-
ing nothing of its logic with the previous implementation.
Trying to automate refactoring can be difficult and time-
consuming. Furthermore, not all refactorings are the same.
Different approaches must be taken depending on the com-
plexity of the refactoring. Refactorings can be classified into
five different categories. An overview is shown in Figure 1.
Level 1 covers very simple, text-based, refactorings and

can be done with a well-crafted regex or a tool like Comby
[vT]. For those, the tool does not need any or just limited
explicit knowledge of the underlying language. However,
although the refactoring may be simple, getting the automa-
tion right can still be very hard. The tricky part is to craft a
search-and-replace expression that covers all edge cases and
does not have any unwanted side effects.

At level 2 are more complex refactorings that require some
knowledge of the underlying language, specifically local
changes that only cover a single method or function. Such
refactorings can sometimes also be done with methods de-
scribed in level 1. Due to the limited scope of the refactoring,
these refactorings are often easier to automate. Examples
of this type of refactoring are replacing an indexed for loop
with a foreach loop or replacing a switch statement with a
map lookup.

At level 3, the definition of level 2 is expanded to class local
changes. This means the refactoring impacts other parts of
the code but only within the same class. Level 2 and level 3
refactorings together build the syntax-based refactoring type.
By syntax-based, we mean that the refactoring knows the
underlying language but does not require a semantic anal-
ysis of the code and can rely on the syntax. A general and
reasonable way for this is to use a lexer and parser combina-
tion that can convert the abstract syntax tree (AST) back into
code. This way, the refactoring can be applied to the AST,
which then can be converted back into code. Level 3 refac-
torings may require a symbol table for resolving references
depending on the refactoring. Some parsers include a symbol
table out of the box; for others, it needs to be implemented
manually.

At level 4, we move into the area of cross-cutting changes,
particularly class local changes that require information from
other files of the project. However, at this level, the impact
on other parts of the code is limited to only needing to check

1

Raphael Jenni

Text-basedLevel 1: Text based replacements
(Advanced) Search and Replace

Level 2: Method local changes
Try with ressource, for loop => stream.for()

Level 3: Class local changes
Private attribute renames, private method changes

Level 5: Multi file changes
Method Renaming, Visibility Change | Changes in other files

Level 4: Class local changes with information from other files
Class to Record => No extendability | Check required

Search + Replace Engines / Pattern Matching
(e.g. Regex, Comby)

Lexer + Parser
(e.g. ANTLR, Bison)

Lexer + Parser + Semantic Analysis
(e.g. Java Parser, JDT, or Spoon for Java or LibCST for Python)

Syntax-based

Semantics-based

Level of analysis
required

Tools that can be used
Examples

Level and Definition
Examples

Figure 1. Types of refactorings

other files but not alter them. If, for example, a class is con-
verted to a record and can therefore not be extended any-
more, the refactoring has to check whether the class is used
in other files and needs to prevent the change if there is an-
other class extending the to-be-refactored class. This would
require an analysis of the whole project and the resolution
of dependencies. However, by limiting the analysis and only
searching for package imports, the refactoring can still be
done without a full dependency resolution.
This brings us to level 5, which is considered the most

complex refactoring type. It is a cross-cutting change that
results in changes in other files. An example: If a class is
renamed, the refactoring has to check whether the class is
used in other files and needs to rename the usages in those
files. At this point, the refactoring needs to know the code’s
semantics and resolve dependencies. Depending on the refac-
toring, this might also result in changes that trigger further
changes. Such refactorings need to be crafted very carefully
and rigorously tested. Together with level 4, level 5 refac-
torings build the semantics-based refactoring type. Those
refactorings, most of the time, have the most significant im-
pact and yield the most considerable benefits. However, they
are also the most complex and often crafted for specific tasks.
For tasks that are not that common, you often are better off
doing it by hand with the support of the IDE and unit tests.
However, for refactoring in some new language features, i.e.,
features that could be used in many different projects, it is
worth the effort to automate them, as other developers can
use them.

Besides having different types of refactorings, there is no
unified way to do refactorings. Every tool reinvents the way
refactorings are done. Every command line interface (CLI)

tool and every IDE has its own set of refactorings and its
own way of invoking them.
In this paper, we look first at related work in the area of

automated refactorings and discuss different possibilities for
creating a tool that is able to specify and perform refactor-
ings in an automated manner across many programming
languages. The findings of this research led to the devel-
opment and implementation of CHAST, a tool to support
the creation of automated refactorings, which will be intro-
duced. Furthermore, we present a case study that shows how
CHAST can be used to create automated refactorings and
how it compares against similar projects. Lastly, we propose
this tool as a flexible, efficient, and secure solution to unify
and standardize the creation of automated refactorings.

2 Related Work
Many approaches have been proposed to analyze code and
automate refactorings. Baqais et al.[BA20] conducted a sys-
tematic literature review of papers on this topic and identi-
fied a wide range of approaches, including meta-modeling
frameworks and generic refactoring languages. One well-
known meta-modeling framework is Famix[BCDGa], which
is used in theMoose platform [BCDGb] for software analysis.
Famix can bridge the gap between programming languages
and analysis tools and has been applied to the task of refac-
toring [DLT00, TDDN01]. Another approach found is the
generic refactoring language 𝑅𝑒L [RWZ11], which can be
customized for specific programming languages and be used
to execute refactorings based on a refactoring description.

A different method for automating refactorings is to con-
vert a project into a database and use queries similar to SQL
to analyze and modify the code. Kim et al.[KBDA16] pro-
posed a tool called R3 that uses a database to store the code

2

Unifying Code Refactorings of Different Languages

and its relations, resulting in faster analysis and refactoring
speeds and a smaller memory footprint. GitHub’s CodeQL
tool[Git] also uses a database approach but is designed for
code analysis in the context of security rather than refactor-
ing.

In addition to these general approaches, many tools focus
on automating refactorings for specific programming lan-
guages. JDeodorant [MTSV16] is a tool for analyzing and
refactoring Java code to improve its quality. The tool has
been developing for over ten years and has even published
a review of the lessons learned from the project [TCC18].
JSparrow [jSp] is another tool for Java that implements a
wide range of refactorings and language upgrades. Zhang
et al.[ZLS21] proposed ReSwitcher, a tool that automatically
updates switch statements to the new switch expressions
introduced in Java 12. Comby[vT] is a tool that can be used
to search and replace code structures using a syntax that is
aware of the underlying programming language, similar to
a regular expression.

Despite the wide range of approaches that have been pro-
posed, there are still many challenges and limitations in the
field of automated software refactoring. Many existing ap-
proaches have limitations in the types of refactorings they
can perform or are not applicable to various languages or pro-
gramming paradigms. These tools can also be complex to use
and may require a significant investment of time to under-
stand and implement. Furthermore, many of these tools lack
integration with other software development tools, making
it challenging to implement them in real-world workflows.
Additionally, many existing tools do not address refactorings’
potential unintended side effects, which can lead to bugs or
even security vulnerabilities. In the current study, we aim to
address and eliminate these limitations.

3 Feasibility of Multi-Language Refactoring
Refactoring is a common task in software engineering. It
does not matter what programming language someone uses;
at some point, code needs to be refactored to either fix bugs,
make the code clearer, or utilize new language possibilities.
Doing a refactoring by hand once, twice, or even thrice is
fine, but as soon as the task gets repetitive, it would be nice
to automate it. But how can a refactoring be automated?
There are several approaches to this problem, three of them
discussed in this section.

3.1 Option 1: Independent Tools
Have multiple independent tools combined in a single
“executable”.

This is the simplest form of them all in terms of needing
to create actual refactoring code. In this option, no actual
knowledge of code refactoring is needed; one can simply
combine existing tools. However, this is the source of its
efficacy. Many tools are available on the internet, floating

around and waiting to be found. The main problem is finding
them and figuring out how they work. When combining
multiple tools, the fact that a single tool only is available for
a single language is not a problem anymore. If the language
modifier framework X is required for the language A, we can
use it. If for language B an entirely different tool is needed,
we can use that. Provided that a supportive tool exists for
the desired operation in the chosen programming language,
it can be utilized.
The problem with this approach is that mostly the same

logic needs to be created for every single language. Moreover,
it needs to be updated and maintained. If a tool gets outdated
and does not work with the newest language version, it gets
more useless with every project that uses a more recent
version. This, in turn, makes the combined tool less useful
until the point where the deprecated tool needs to be dropped
and the support for the language with it.
A significant advantage of this approach is that existing

refactoring tools can be used to implement the functionality.
Those tools often provide some features that make it easier
to work with, cover the whole feature set of the language,
are most of the time actively maintained, and have an active
community that can provide support if needed.

3.2 Option 2: Multiple Modifiers - Single Logic
Have a tool that uses a separate language modifier per
language but shares the core logic between them.
Take as a language modifier a simple parser that has the

ability to change the syntax tree and converts the changed
AST back into code. If such a parser is available for multiple
languages, accessible through one language, the core logic
can be extracted. Only a mapping between the language-
specific and the language-independent parts is needed.
There exist tools that support that kind of functionality.

Parser generators - ANTLR [Par] is one example. You specify
a grammar (or use one provided by the community) and
generate a lexer and parser for it. For ANTLR, the default
output is Java, but other languages are also supported. Using
ANTLR for the above-described approach works as long as
the changes are local to one single file. Once the core logic is
defined, only little effort is required to adapt it to support an
additional language. More specifically, a new grammar file
is needed and, depending on the core logic implementation,
a few mappings or selector functions.
This approach’s benefit is removing the need to re-

implement the same core logic repeatedly. The problem is
that it requires quite some initial work to design a core logic
that encapsulates most of the refactoring logic and has a min-
imal footprint in terms of mapping to the target language.
In section 4, this approach is covered in more detail.

3

Raphael Jenni

3.3 Option 3: Domain Specific Language (DSL)
Abstract common language features like variables,
methods, classes, etc., into their own domain-specific
language that maps to the original code.
Creating an entire domain-specific language (DSL) is a

more extreme version of option 2. In this case, a new lan-
guage or at least an abstraction of a language is created.
For every language that gets supported, an adapter must be
implemented that maps the individual parts to the DSL. As
soon as the whole language adapter is created, refactorings
that work on common elements such as classes, methods/-
functions, or common constructs like if statements can be
refactored directly in this DSL.
The benefit of this option arises as soon as there is a lan-

guage adapter. All new operations are automatically sup-
ported by all languages with such an adapter. This makes
adding new functionality much more straightforward and
faster than all the other approaches. This is especially true
if the DSL is explicitly created for refactoring and has some
quality-of-life features.
The obvious problem with this approach is finding the

common parts of languages and creating a DSL for it. More-
over, after creating the DSL, all its adapters need to be created,
tested, and updated. Adding a new language requires again
implementing the full adapter. Besides that, such a tool would
be very limited in extended functionality that involves some
language specifics not present in other languages. Option 2
has the same problem if the goal is to create a single model.
However, if there is an adjusted model per refactoring, this is
not a problem anymore. The tradeoff is between the amount
of work and overall code that is required and the flexibility
of the tool.

3.4 Viability of Options
The conclusion of analyzing the viability of those different
options is to only stick to options 1 and 2. For both options,
a base refactoring framework could be created that provides
the basic functionality for all refactorings and collects some
common operations that can be reused. However, option 1
requires a tool to wrap the tools in a single, maintainable,
and testable interface. This is where CHAST comes in, which
will be discussed in section 5. Creating a dedicated DSL has
already been tried several times, but no solution has become
mainstream yet. Therefore going the route of options 1 and
2 seems to be better at the moment.

4 Parser Generators as Refactoring Meta
Language

As discussed in subsection 3.2, it is possible to use parser
generators as a refactoring meta language. This section will
expand on this idea and show how it could be implemented.

First of all, it is essential to understand what parser gener-
ators are. A parser generator is a tool that generates a lexer

and a parser from a grammar. This can be a grammar of an
existing language or a grammar of a new language. Depend-
ing on the parser generator, different grammar formats are
supported, and different output formats are generated. For
example, ANTLR [Par, Par13] supports a grammar format
called ANTLR4 and generates a lexer and parser in Java.
However, other output languages are supported as well.

The part of the parser generator that needs to be explained
for this section is how the parser is generated: Every parser
parses the input code into an abstract syntax tree (AST)
structure where every node represents a part of the code.
Although the AST differs for every language, the general
structure remains the same. Therefore, every AST can be
traversed similarly, and with the power of polymorphism,
the same functions can be called on every node. When only
inspecting the traversing of the AST, this is the same for
every language. Only the nodes themselves, i.e., the con-
crete code written in the respective language, are different.
If we map a node’s type to a general one, we can do AST
manipulations by utilizing the general types instead of the
language-specific ones. This allows us to extract the AST
manipulation part and use it for any language that has the
corresponding mapping of nodes to general types.
In Figure 2, the idea is visualized. The parser generator

generates a parser for a language based on a grammar. This
parser is then used to parse the input code into an AST. Con-
sequently, the AST is traversed, and the nodes are mapped to
general types. For each mapped node, the refactoring logic
decides what to do with that node. If new nodes need to be
created or existing nodes need to be moved or deleted, the
refactoring logic can do that, and the AST is modified. After
the AST is modified, the AST gets converted back into code.
For this to work, the parser and its AST need to support the
conversion from AST to code. In ANTLR, the AST is linked
to the token stream. Each node in the AST links to the start
and end token in the stream. When moving nodes around or
replacing a node with another node, the token stream can
be adjusted directly. After the refactoring, the token stream
can be converted back into code, and all code that was not
changed remains unchanged. This includes newlines, com-
ments, or special formatting. For a better understanding of
the whole process, two examples will be discussed.

4.1 Example: Rearrange Class Members
The first example is a refactoring that rearranges the mem-
bers of a class. Depending on the language, this can include
fields, methods, constructors, and so on. It also includes the
visibility of such a member, for instance, whether a field is
private or public, to name just one. The refactoring should
be able to rearrange the members in a way that the user
specifies. For example, the user could specify that all public
fields should be at the top of the class and all private fields
should be at the bottom. Here the languages Java, Kotlin,
and C# are supported.

4

Unifying Code Refactorings of Different Languages

AST <LANGUAGE>

Class

Method ...

... Field

Types Mapping <LANGUAGE>

class declaration class

method declaration method

field declaration field

Irrelevant for refactoring and therefore ignored

Refactoring Logic

Traverse AST

Map node

Decide what to
do with node

Adjust AST

Parse file

Parser Generator

(Manually Created)
Adapter

<LANGUAGE>
GRAMMAR

Write changes
back to file

Figure 2. Using Parser Generators and Mappings for Refactorings

To start this process, we need to figure out what infor-
mation and what AST types are required to rearrange the
members, following these steps: First, we need to be able to
detect a class. Second, we need to be able to access the mem-
bers of a class. Third, we need a map from the AST type of a
member to a general type and a map from the AST visibility
to a general visibility. And last, we need a definition of how
to handle hidden tokens like newlines, spaces, or comments.
With this information, we can start implementing the

refactoring. Generally, we walk through the AST, and we
rearrange the members for every class we find. The rear-
ranging is done by first collecting all members and then
sorting them. After sorting, the members are added to the
class in the correct order. It is important to note that the AST
traversing is not continued further down that branch after a
class is found and modified. This prevents nested instances
from conflicting with the outer instance, as everything is
done on a single token stream. To mitigate this restriction,
the reordering process is done multiple times until no more
changes are made. After a refactoring, the token stream is
converted back into code and then again parsed into a new
AST and its corresponding token stream.

Interestingly, a lot of the logic for rearranging and walking
through the AST can be reused for other refactorings. There
is only a small part that is specific for a particular refactoring.

All the code for this example can be found in the GitHub
repository accompanying this paper.

4.2 Example: Remove Double Negation
The second example is a refactoring that removes double
negations from a boolean expression. For example, the ex-
pression !!(a == b) can be simplified to a == b. This also covers
cases where the double negation is separated by parentheses
such as !(!(a == b)). In this example, the languages Java and
Python will be supported. The main difference here is that
Java uses a ! for negation, and Python uses the not keyword.
Compared to the first example, this refactoring does not
move nodes but instead removes nodes and moves nested
nodes to the parent node.

To start this process, we need to figure out what informa-
tion and what AST types are required in order to remove
double negations, following these steps: First, we need to be
able to detect a boolean expression. Second, we need to be
able to detect a negation. Third, we need a condition for when
a negated boolean expression contains a boolean expression
that is also negated. And last, we need a cancel condition
not to remove negations of composite boolean expressions.
A composite boolean expression is an expression that con-
tains multiple boolean expressions, such as a == b && c == d or
a == b || c == d. This is needed as removing a negation of a
composite boolean expression would change the meaning

5

Raphael Jenni

of the expression or a possible intended use of double nega-
tion. Depending on the grammar of the language, this case
is already handled by the parser and the produced AST.

With those selectors and conditions in place, we can start
implementing the refactoring. Similar to the first example,
we walk through the AST and check whether it contains
a double negation for every boolean expression we find. If
it does, we replace the first negated expression with the
expression of the second negated expression. We continue
doing that until no more double negations are found in that
AST path. The rest is the same as in the first example.

As it turns out, much of this logic can be reused for other
refactorings. In fact, parts of the refactorings from the first
example were used in the second example. All the code for
this example can be found as well in the GitHub repository
accompanying this paper.

5 CHAST: Change Stuff
Imagine the following scenario: A developer wants to per-
form a number of refactorings: First, they check their IDE
whether it provides this functionality. If not, the search for
it continues on the internet. There, with some luck, several
tools can be found that do have the required functionality.
Although the first link shows a project that seems to do what
they are looking for, it might not be maintained anymore.
While the next link is a maintained project, it is not avail-
able for the required language. The link after that leads to
a project that is maintained and available for the language
but has no documentation. And finally, the last link reveals
a project that is maintained, available for the language, and
has documentation but has a bunch of dependencies and
needs to be built first. Furthermore, the available CLI is not
very intuitive, has no log output, and just edits the files in
place. The developer is now left with the decision of whether
to use the tool or not. However, as it seems to be the best
option available, it will be used. As he does not trust the
tool, he will spin up a VM that is not connected to the in-
ternet and continues the evaluation from there. After a few
hours of trying to get it to work, it finally works and does
what it should. After some time, the tool needs to be used
again, but the user has forgotten how to operate it. There-
fore, the whole process starts again. However, the earlier
found solution might not work anymore to build a new ver-
sion. This may result in the user becoming frustrated and
deciding to do the refactoring manually instead of using the
tool, even for repeated refactorings. However, by doing so,
the developer not only wastes time but also loses focus on
the actual task at hand. Furthermore, there is a high risk
of introducing bugs, as errors coming from copy-paste or
search-and-replace actions are very common. As for the tool,
losing users will eventually result in it being discontinued
and abandoned.

Of course, this is a very simplified example and may also
not always be the case, but it illustrates the problem. Besides
that, if it happens, it is very annoying and leads to not looking
for any tool at all anymore, even if another language would
have better tools available. And this happens despite the fact
that actually certain commands are present no matter what
language is used, taking a linter or a formatter as an example:
Every language has one in one way or the other. A single
tool should be able to handle those and select the correct
underlying tool based on the present project.
In conclusion, there is a need for a single tool that can

handle widely used commands as well as select the correct
underlying tools based on a given description. This is where
CHAST comes in, addressing those mentioned issues and
laying the groundwork for further feature additions in the
future.

5.1 Concepts
The questions outlined in the following paragraphs have
been identified and defined to create a possible solution to
the above-mentioned issues. Furthermore, these tasks are
associated with existing concepts and tools to discuss the
proposed solution, i.e. CHAST, later. In the first version of
CHAST, as presented in this paper, not all the mentioned
features are implemented yet, but the groundwork is laid
for future extended versions. For an up-to-date list of the
implemented features, see the repository’s README .

How to run an application with all its dependencies
without the need to install every single one on your sys-
tem? The answer here are Docker and Nix . With the help
of Docker, tools can be run in containers already contain-
ing the required dependencies. Nix is a tool with the aim of
supporting reproducible builds where you can define a set
of dependencies and their versions, while Nix handles the
resolution, download, and environment for you. To make
use of those tools, you need to have one of the two installed.
There is also the option to run NixOS in a docker container.

How to access all the tools written for CHAST that
are available? Here the system is similar to every other
available packaging system. There exists a repository that
lets developers upload their tools and also allows users search
for tools and see their documentation. This common andwell-
understood approach is implemented by many tools, such as
Docker with DockerHub, Maven with MavenCentral, or npm
with npmjs.org. Hosting private repositories for company-
specific tools will be made possible as well. It is crucial that
the tools need to be available in a central place, are well
documented, and are easy to find. This leads us to the next
point.

How to improve the documentation and quality as-
pects? Documentation and tests are first-class citizens of
CHAST. Documentation should be provided directly in the

6

Unifying Code Refactorings of Different Languages

recipe, CHAST’s definition configuration of a refactoring,
itself and then automatically extracted for displaying it in
the repository. Furthermore, tests provide a crucial part of
the documentation as well. They clearly state what outputs
based on certain inputs are expected. Tests should be treated
as examples of how the tool is used. Based on documentation
and tests together, the user should have a much easier time
finding the relevant information and no need to dig through
the source code to figure out how to run it.

How is the security of the user’s system ensured? To se-
cure the system from any unwanted side effects, the process
needs to be run isolated. As demonstrated with Docker, this
can be done by utilizing several Linux primitives internally,
namely: (user) namespaces, change_root or pivot_root, and
union mounts. Namespaces partition kernel resources such
as mounting disks, network, or CPU usage to a process so
that this process only sees the defined set of resources. User
namespaces are namespaces that a non-root user can create.
Change_root or pivot_root both allow us to set a new root
directory (/) for a process. With this functionality, Docker
enables us to run, for example, AlpineOS on an Ubuntu ma-
chine. Finally, union mounts such as overlayfs or Unionfs,
enable us to create an overlay over one or multiple folders,
combine them into a single one, and track the changes in
a single folder. Docker uses this functionality to slice their
images into pieces that only hold the changed data.
In CHAST, we can use those tools to run a command

isolated from the host system and track all changes made
in a persistent and non-intrusive way. We are doing this
by creating an overlay over the root file system in a user
namespace and then change_root into the newly overlayed
root system. The process subsequently runs normally on the
system as if it were the host system itself. However, changes
made by the script are not directly reflected in the root file
system but are written into a separate “changes” folder. The
overlay gets removed when the process is done, and we are
left with the changes. On these, we can now do security
analysis or user confirmation before applying it to the actual
file system.
For sandboxing as such, other tools on Linux are Fire-

jail [Net] or bubblewrap [Con], which also use Linux primi-
tives, but are more focused on not harming the system than
on tracking changes.

How to make it easy to use and extend? CHAST builds
on a configuration called recipe in two versions. A yaml
version that is easy to read andwrite evenwith no knowledge
of the tool. Even though yaml is a powerful format, it is not
very powerful in terms of defining complex data structures
and logic. Furthermore, due to its open nature, it is very easy
to make errors and no parser can catch them all. Therefore, a
second recipe is used, which is a dedicated CHAST language,
which also includes some quality-of-life features and some
included functionality. The yaml recipe is transpiled into the

CHAST language and then executed. This allows us to have
a simple and easy-to-read configuration while still having
the power of a programming language.
To build extendability, CHAST recipes should be able to

call other CHAST recipes inside of them. This allows us to
build a library of recipes that can be used by other recipes.
Each recipe can therefore be extended or just linked together
to build a new recipe. This is similar to how docker images
are built. Each image is built on top of another image and can
be extended by adding new layers on top of it. The CHAST
recipes can also be divided into separate files to make them
more readable and maintainable.

With all the security in place, how is the tool kept
fast? Speed is a valid concern, as nobody wants to use a
slow tool. Fortunately, overlayfs and unionfs are remarkably
performant, and the overhead isn’t noticeable for typical
tasks. Applying the changes in the end is done by moving
and overwriting the files from the change folder to the origi-
nal location. As moving only changes the file pointer, this
operation is very fast and does not result in any heavy disk
usage as long as everything takes place on the same disk. Fur-
thermore, some of the cleanup operations are done during
the execution and can be parallelized.

Why should a developer bother to add a CHAST pack-
age? For tools with an already solid CLI, CHAST is just an
extension of reach and a simplification of use for the user,
as there is no need to install all the dependencies. However,
for developers that have created a tool and do not want to
handle all the user interactions of the CLI, the website with
documentation and usage instructions, and the publishing,
CHAST might be the missing part in the system.
A real benefit of CHAST is that everyone can create a

recipe. If there is the need to combine multiple tools into a
single one, the user can easily do that and publish its recipe.
Maybe someone else needs the same functionality or even
extends the functionality further, it can easily be achieved.
CHAST follows the from-developers-for-developers idea and
depends on an active community. It is comparable to Docker
and its wide variety of images provided by numerous de-
velopers to solve everyday issues. Without the community
creating new images, it has to be understood that Docker
would not be what it is today. Likewise, CHAST will be de-
pending on its user community for its further growth and
development.

6 Evaluation
Although many tools for task automation exist, no tool incor-
porates change isolation, which would lead to a much more
secure and reliable refactoring process. This section presents
the evaluation of the proposed approach divided into two
parts. The first part evaluates the proposed approach in terms
of the change isolation, and the second part evaluates the

7

Raphael Jenni

approach in terms of the time and amount of work it takes
to create a refactoring.

6.1 Change Isolation
As Docker heavily inspires CHAST’s change isolation, this
section will use Docker as a baseline for the evaluation. We
assume that the refactoring is already packed, once in a
Docker container and once in a CHAST recipe. When using
Docker to do such a task, the docker container first needs to
get all the necessary files from the host system. Exposing the
relevant folder to the container ensures that the refactoring
script has only access to the relevant files and not to the
rest of the system. However, to do the refactoring not on the
actual files, the container or the host system must copy the
files to a temporary folder. Depending on the project size,
creating a copy of the project can take a significant amount
of time. Moreover, as soon as the refactoring is done, the
differences between the original and the refactored files must
be manually built. If parts are not needed, they need to be
removed as well. Automating this removal could lead to data
loss if the original files were not a copy but the actual files
instead. Therefore, this step is also done manually. Lastly, the
refactored files must be copied back to the original location
when everything is done. However, this includes not only
the modified files but the whole project, which again takes a
significant amount of time. In terms of security, this variant is
undoubtedly secure as the refactoring script only has access
to the relevant files. Limiting the container’s capabilities is
also possible, for example, preventing the container from
accessing the internet. However, it is not optimal for the use
case of changing something in a project or on your system.
This is also not the task Docker was designed for.

CHAST’s approach is different in that it does not require
any copying of files. Instead, the refactoring script is executed
on the actual files. This means that the refactoring script
has access to the whole project and host system and can
change anything it wants. However, as the host system is
overlayed, all changes are isolated to a separate layer. This
means that the changes are not visible to the host system,
and the original files are not changed as long as the user
does not give his confirmation. This means that the user can
inspect all changes and decide whether to keep them or not.
Filtering out unwanted side effects can here also be done
automatically. Filtering in this context means discarding
changes that are not relevant to the refactoring.
Other approaches also automate tasks. They often also

have a corresponding script to configure the task and in-
corporate the possibility of sharing it with others. However,
such tools do not provide any isolation of the changes and
act unrestricted on the host system.

One can argue that Git is also a tool that handles changes.
However, Git is not designed to automate tasks. Furthermore,
Git only provides a way to handle changes for checked-in
files. Files not tracked by Git but changed by a refactoring

script will not be detected. This would suffice for only refac-
torings in a single project. However, if the change affects files
outside the project or even the entire system, Git will not
detect those changes. This is also the case for other version
control systems like SVN or Mercurial.
CHAST provides a unique approach to automating tasks

and isolating the resulting changes. It tracks all changes
made by a task, regardless of where the files are located
on the system. This change isolation feature is similar to
sandboxing tools but with the added ability to filter out un-
wanted changes and retain only the intended modifications.
This makes CHAST a secure option for running unfamiliar
scripts on your machine without requiring manual review.
Overall, CHAST offers improved security and reliability for
task automation.

6.2 Creating a refactoring
Creating a refactoring with CHAST involves two steps: writ-
ing the refactoring script and creating a CHAST recipe to
define the script’s execution and testing.
To demonstrate this process, we will use a refactoring

script that converts a Java class to a Java record, introduced
in Java 14. This refactoring uses the Spoon library, created
by Renaud et al.[PMP+15], to analyze and refactor the Java
code. We have chosen to use Spoon instead of a parser gen-
erator approach because this refactoring is specific to Java
and cannot be used with other languages. Additionally, this
refactoring is a level 4 refactoring (as described in Figure 1)
that requires the resolution of dependencies and the creation
of a symbol table. These tasks are challenging to accomplish
with a parser generator approach and would require signif-
icant additional work. All code for this refactoring can be
found in the CHAST repository.

The required refactoring script has two stages. In the first
stage, it checks whether the class can be converted to a
record by verifying that it is not abstract, has no non-final
fields, and has a constructor with all fields as parameters.
If the class meets these conditions, the refactoring script
proceeds to the second stage. In this stage, it creates a new
record with the same name and fields as the class, creates a
constructor for the record with the same parameters as the
class’s constructor, copies all methods from the class to the
record, and replaces the class with the record in the code.
The refactoring script is written in Kotlin and must be

compiled into a jar file in order to be executed and convert
the specified class to a record. The CHAST recipe specifies
how this jar file should be executed and what inputs and
outputs it needs to have. The recipe also includes a section
to define any files or directories that must be included or
excluded from the set of changes made by the refactoring.

Listing 1 is an example of how the CHAST recipe for the
class-to-record refactoring might look: The primaryParameter

defines the input file as the only argument to the script.
The run task specifies that this script only applies to Java

8

Unifying Code Refactorings of Different Languages

1 version: 1

2 type: refactoring

3 name: ClassToRecord

4 maintainer: Raphael Jenni

5
6 primaryParameter:
7 id: inputFile

8 type: filePath

9 description: The file to be refactored.

10
11 run:
12 - id: rearrange_class_members

13 supportedExtensions:
14 - java

15 script:
16 - java -jar ./ class_to_record.jar $inputFile

17 includeChangeLocations:
18 - $inputFile

Listing 1. Java Class to Record CHAST Recipe

files. The script section defines the script to be executed with
the Java binary and the input file as an argument. Lastly,
the includeChangeLocations section defines that the refactoring
script should only include the input file in the changes. This
limitation is required because the refactoring creates a ./bin/

folder in the project root during its execution. As this folder
is not relevant to the refactoring, it, therefore, should not be
included in the changes.

The tests for this refactoring are omitted here for the sim-
plicity of the example. Of course, the refactoring script itself
can define tests with jUnit or any other testing framework.
But for completeness and as an integration test of the CHAST
script, tests should always be defined directly in the CHAST
recipe.
Running the refactoring script with the CHAST recipe

yields the output shown in Listing 2. The user can then
choose to accept or reject the refactoring.

Without using CHAST to create the refactoring, the refac-
toring script would need to be executed manually, tested
manually, and integrated into a CLI manually. This would
also require separating the refactored version from the origi-
nal version, creating a diff, and obtaining user confirmation,
which requires a significant amount of additional work, to
be repeated for each consecutive refactoring.
Using CHAST streamlines the process of creating refac-

torings by providing a command-line interface and recipe
format for specifying and testing refactorings. This allows
users to quickly add a CLI, documentation, and tests to their
refactoring, improving the overall quality and reliability of
the refactoring. Additionally, the change isolation feature
of CHAST helps to catch errors early on and prevents unin-
tended side effects by filtering out irrelevant changes. The
initial effort required to create a refactoring remains the
same, but the time spent creating the CHAST recipe is signif-
icantly reduced. As CHAST continues to grow its base set of
refactoring operations, the process of creating refactorings

[INFO]: local .(* Runner).Run - Running pipeline PIPELINE -...

[INFO]: local.sequentialRun - Running step class_to_record -...

>>> Setting up folders , Mount UnionFs

[INFO]: namespace.nsExecution - Running in isolated environment

[DEBUG]: namespace.nsRun - Running command in isolated environment

>>> Command output

[DEBUG]: namespace.nsRun - Running command done!

>>> Cleanup , Unmount Folders

[INFO]: local.sequentialRun - Running pipeline post processing

[INFO]: report.PrintFileTree

samples

java

records

[~] Person.java

[INFO]: report.PrintChanges - /samples/java/records/Person.java

-class Person {

- private final String firstName;

- private final String lastName;

-

- Person(String firstName , String lastName) {

- this.firstName = firstName;

- this.lastName = lastName;

- }

-

- public String firstName () {

- return firstName;

- }

-

- public String lastName () {

- return lastName;

- }

-

+record Person(String firstName , String lastName) {

+

= public String name() {

= return firstName + " " + lastName;

= }

=

=}

Do you want to apply the refactoring? (y/N)

Listing 2. CHAST Java ClassToRecord Conversion Output -
Adjusted

becomes even more efficient and allows for reusing elements
from existing recipes.

6.3 Limitations, intended improvements and further
use cases

While it is obvious what can be gained by using CHAST,
one limitation of CHAST’s current version shows in that
a new environment is created for every refactoring, which
can result in some binaries not being available on the path
and environment variables not being propagated. In future
versions of CHAST, this issue can be addressed by supporting
Docker andNix, aswell as copying the environment variables
from the user session to the isolated environment. This will
further improve the usability, reliability, and flexibility of
CHAST, allowing it to support a broader range of tools and
tasks.
Furthermore, it needs to be noted that CHAST currently

supports Linux exclusively due to its reliance on Linux prim-
itives. However, there are ways to use CHAST on other op-
erating systems, by using it in combination with Docker or
WSL. In the future, it is intended to expand the compatibility

9

Raphael Jenni

of CHAST to other platforms, making it more accessible to a
broader developer community.
Another limitation of CHAST is that it currently only

supports the yaml recipe. As yaml can sometimes be verbose,
it is intended to add support for the mentioned CHAST-
specific DSL in the future. This addition will allow for a more
concise and readable recipe format, which will improve the
overall usability of CHAST.

While this paper focuses on the refactoring of source code,
CHAST could, in the future, also be used for other tasks,
such as automating the installation of software. This can be
particularly useful for software that is not available in the
operating system’s package manager or for simplifying the
installation process that may vary across different operat-
ing systems and flavors. In addition, CHAST can be used to
unify the use of linters and formatters, which are available
in most languages. By addressing these limitations and ex-
panding the capabilities of CHAST, it has the potential to
become a powerful and versatile tool not only for refactoring,
as described in this paper, but for automating tasks across
languages and platforms.

7 Conclusion
In conclusion, this paper presents the feasibility of multi-
language refactoring and explains how it can be achieved
through the use of parser generators as a refactoring meta
language. By designing a core refactoring logic and using
language-specific mappings, it is possible to apply the same
refactoring to multiple programming languages. This ap-
proach has the potential to significantly reduce the effort
required to implement and maintain refactorings for mul-
tiple languages, as well as improve the user experience by
providing a unified interface for accessing these refactorings.
Thus, it highly contributes to the efficiency and effectiveness
of developers in their strive to continuously improving their
software.

As part of this research project, the CHAST tool was devel-
oped and introduced, which aims to address the challenges
of finding and using refactoring tools by providing a unified
interface for accessing refactorings and other code-related
tools, as well as a packaging system for distributing these
tools. CHAST is designed to be language-agnostic and to sup-
port a wide range of tools and functionality. While CHAST
is still in its early stages of development, it has the potential
to significantly improve the accessibility and usability of
refactoring tools, as well as to facilitate the development of
new refactorings and code-related tools.
In future work, it will be essential to continue the de-

velopment of CHAST and to evaluate its effectiveness in
real-world scenarios. Further research may be necessary to
explore and extend the limits and reduce potential trade-offs
of using parser generators as a refactoring meta language.
Overall, multi-language refactoring and the potential of tools

like CHAST to facilitate this process represent significant
opportunities for improving the productivity and quality of
software development.

References
[BA20] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb.

Automatic software refactoring: a systematic literature review.
Software Quality Journal, 28(2):459–502, 2020.

[BCDGa] Prof. Alexandre Bergel, Dr. Andrei Chis, Dr. Stéphane Ducasse,
and Dr. Tudor Girba. Famix-Moose. https://pavel-krivanek.
github.io/famix/.

[BCDGb] Prof. Alexandre Bergel, Dr. Andrei Chis, Dr. Stéphane Ducasse,
and Dr. Tudor Girba. Moose. https://moosetechnology.org/.

[Con] Containers. containers/bubblewrap: Unprivileged sandboxing
tool. https://github.com/containers/bubblewrap.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar.
MOOSE: An Extensible Language-Independent Environment for
Reengineering Object-Oriented Systems. Proceedings of the 2nd
International Symposium on Constructing Software Engineering
Tools, pages 24–30, 2000.

[Git] GitHub. CodeQL. https://codeql.github.com/.
[jSp] jSparrow. jsparrow | an automated java refactoring tool. https:

//jsparrow.io/.
[KBDA16] Jongwook Kim, Don Batory, Danny Dig, and Maider Azanza.

Improving refactoring speed by 10X. Proceedings - Interna-
tional Conference on Software Engineering, 14-22-May-:1145–
1156, 2016.

[MTSV16] Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and
Zackary Valenta. Jdeodorant: Clone refactoring. In Proceedings
of the 38th International Conference on Software Engineering
Companion, ICSE ’16, page 613–616, New York, NY, USA, 2016.
Association for Computing Machinery.

[Net] Netblue30. netblue30/firejail: Linux namespaces and seccomp-
bpf sandbox. https://github.com/netblue30/firejail.

[Par] Terence Parr. Antlr. https://www.antlr.org/.
[Par13] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic

Bookshelf, 2nd edition, 2013.
[PMP+15] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos

Noguera, and Lionel Seinturier. Spoon: A Library for Imple-
menting Analyses and Transformations of Java Source Code.
Software: Practice and Experience, 46:1155–1179, 2015.

[RWZ11] Thomas Ruhroth, Heike Wehrheim, and Steffen Ziegert. ReL:
A generic refactoring language for specification and execution.
Proceedings - 37th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, SEAA 2011, pages 83–90,
2011.

[TCC18] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzi-
georgiou. Ten years of JDeodorant: Lessons learned from the
hunt for smells. 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018 - Proceedings,
2018-March:4–14, 2018.

[TDDN01] S Tichelaar, S Ducasse, S Demeyer, and O Nierstrasz. A meta-
model for language-independent refactoring. pages 154–164,
2001.

[vT] Rijnard van Tonder. Comby - structural code search and replace
for every language. https://comby.dev/.

[ZLS21] Yang Zhang, Chaoshuai Li, and Shuai Shao. Reswitcher: Au-
tomatically refactoring java programs for switch expression.
Proceedings - 2021 IEEE International Symposium on Software
Reliability Engineering Workshops, ISSREW 2021, pages 399–400,
2021.

10

https://pavel-krivanek.github.io/famix/
https://pavel-krivanek.github.io/famix/
https://moosetechnology.org/
https://github.com/containers/bubblewrap
https://codeql.github.com/
https://jsparrow.io/
https://jsparrow.io/
https://github.com/netblue30/firejail
https://www.antlr.org/
https://comby.dev/

	Abstract
	1 Introduction
	2 Related Work
	3 Feasibility of Multi-Language Refactoring
	3.1 Option 1: Independent Tools
	3.2 Option 2: Multiple Modifiers - Single Logic
	3.3 Option 3: Domain Specific Language (DSL)
	3.4 Viability of Options

	4 Parser Generators as Refactoring Meta Language
	4.1 Example: Rearrange Class Members
	4.2 Example: Remove Double Negation

	5 CHAST: Change Stuff
	5.1 Concepts

	6 Evaluation
	6.1 Change Isolation
	6.2 Creating a refactoring
	6.3 Limitations, intended improvements and further use cases

	7 Conclusion
	References

