
Fabian Germann & Raphael Jenni

Automation of the OST-RJ
Examination Scheduling

Semester Project

OST – Eastern Switzerland University of Applied Sciences
Campus Rapperswil-Jona

Supervision

Prof. Dr. Farhad Mehta

December 2020

Abstract

Exam scheduling is a known NP-complete problem. Finding the best solution for such
a problem is near impossible for a human and takes forever for a computer. Computer-
aided exam scheduling, or generally speaking problem solving, takes advantage of trying
many possible solutions in an automated way and combining it with algorithms that help
optimize the solving process. Testing the quality of a solution is carried out with several
constraints and their assigned penalties and weights.

In this project, a constraint solver called OptaPlanner was used to model the problem
domain and create constraints for it, all written in Java. The constraints correspond to
the explicit and implicit constraints the (human) exam planner applies when scheduling
the exams. The data is imported from files, processed, solved, and exported as a file and
visualized in a web frontend.

The results are not production-ready but build a reasonable basis for future work. All hard
constraints can be fulfilled, and some of the soft constraints are optimized. Scheduling
the exams becomes much more comfortable, and the manual work can be reduced from
several hours to an absolute minimum.

Keywords: Exam Scheduling, Problem Solving, Constraint Programming, OptaPlanner,
NP-Completeness.

i

Executive summary

Exam scheduling is known to be a challenging problem to solve. Manually scheduling the
exams was executed in an enormous Excel file and took several weeks. With the help of
computer-aided exam scheduling, we provided the first version of an automated solution.

In the exam scheduler’s current version, all mandatory rules for feasible schedules are ful-
filled. One optimization rule is in place. The rules are definedwith a constraint solver called
OptaPlanner, an open-source library maintained by RedHat. The exams and students are
imported from files, processed, scheduled, and exported as files and visualized in a web
application.

The current results are not production-ready but provide a reasonable basis for future
work. Scheduling the exams becomes much more comfortable. The manual work can
be reduced from several hours to an absolute minimum. Comparing a generated exami-
nation schedule with the manually created one has shown the potential to create better
examination timetables.

To make it production-ready, all the remaining rules need to be implemented. The fron-
tend requires additional features, a design overhaul, and some quality of life features. For
performance improvement, the algorithms for scheduling the exams can be optimized.
With the continuation of this project, a fully automated scheduling process is possible.
It promises significant improvements in the quality of the schedules and the time and
iterations it takes to create such a schedule.

ii

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Structure of the Report . 1

2 Problem Analysis 3
2.1 Domain . 3
2.2 Problem Description . 4
2.3 The Exam Timetable Problem is NP-Complete 5

3 Research 7
3.1 Solution Strategies . 7

3.1.1 Requirements for Third-Party Software 8
3.1.2 Constraint Solver vs. Existing Products 8

3.2 Evaluation of Constraint Solver . 9
3.2.1 CPSolver (UniTime.org) . 9
3.2.2 Choco Solver . 10
3.2.3 OptaPlanner . 10

4 Solution 11
4.1 Constraint Solver Choice . 11
4.2 Problem Modeling and Implementation with the OptaPlanner 12

4.2.1 Model . 12
4.2.2 Constraints . 14
4.2.3 Score Function . 16

4.3 Architecture and Design . 17
4.3.1 Core System and API Application Architecture 18

4.4 Visualization . 19
4.5 Data Import And Export . 21
4.6 Quality Assurance . 21

iii

5 Results 22
5.1 Simplifications of the Current Model . 23
5.2 Analyzing the Generated Exam Schedules 25
5.3 Comparison with a Manually Created Exam Schedule 28

6 Conclusion 31

A Code Stats 33
A.1 Lines of Code (LOC) . 33
A.2 Test Coverage . 33

Glossary 34

Acronyms 36

Abbreviations 37

List of Figures 38

List of Tables 39

List of Listings 40

Bibliography 41

iv

Chapter 1

Introduction

About 250 exams involving up to 1,500 students take place on theOSTcampusRapperswil-
Jona each semester. Creating an examination schedule to this extent is a challenge.Many
spatial and temporal constraints have to be taken into account. Until now, the timetables
have been created manually by the examination planning team.

1.1 Objective

Creating an examination schedule by hand is a complicated and tedious task that takes
several weeks to finish. Moreover, this repetitive task must be completed anew every
semester. Hence, the overall goal of this project is to come up with a software solution
that supports the examination planning team in its job.

The most challenging and time-consuming part of the whole process is the creation of an
optimal examination timetable that fulfills certain constraints. Therefore, the focus of this
project is on the automatic generation of optimal timetables. The objective is to develop
a software solution that is able to find the best possible examination schedule, given a list
of constraints.

1.2 Structure of the Report

The report is organized as follows:

Chapter 2 gives an overview of the domain and describes the examination timetable
problem in detail – including all constraints that have to be taken into account for an
optimal timetable. It also explains why this problem is not easy to solve.

1

Chapter 1. Introduction 2

Chapter 3 reflects the literature research that was conducted at the beginning of this
project. In addition, existing solutions and possible strategies for the exam scheduling
software are described and evaluated.

Chapter 4 describes our solution to the problem. This includes the software architecture
as well as our architectural decisions and solution strategy. Moreover, the main aspects
of our implementation are explained in detail.

Chapter 5 presents and discusses the result of our semester project. Some generated
exam timetables are shown and analyzed in detail. A comparison with a former manually
created timetable is provided as well.

Chapter 6 summarizes the outcome of the semester project. In addition, an outlook re-
garding the developed software is given.

Chapter 2

Problem Analysis

2.1 Domain

The problemdomain (Figure 2.1) is straightforward. Students register for exams theywant
to take. Exams are supervised by one or more supervisors. The goal is to create an exam
timetable that consists of multiple entries. A timetable entry is the scheduling of a single
exam. It assigns a date and one or multiple rooms for each exam.

Exam

-pdfeld: integer

 -durationInMinutes: integer

 -code: string

 -description: string

 -mode: string

 -regularSemester: string array

 -oraExam: boolean

 -computerRoomRequired: boolean

Supervisor

-name: string

 -unavailablePeriods

Student

-pid: integer

 -firstName: string

 -lastName: string

Room

-nr: string

 -capacity: integer

 -unavailablePeriods

 -airConditioned: boolean

 -computerRoom: boolean

ExamTimetable

TimetableEntry

-date: dateTime

1

1

*

*

*

1

Each room can be

 unavailable during certain

 periods. No exam can take

 place during those periods.

A supervisor can block certain

 periods. The supervisor cannot

 supervise any exam during those

 periods.

*

*

*

*

Figure 2.1: Domain Model

Many entities have natural identifiers. Each student is uniquely identified by its “PID”. Sim-
ilarly, each exam has a unique id which is arbitrarily called “pdfeld”. Rooms have a unique
roomnumber. Only the supervisors do not have an id and are just identified by their names.

3

Chapter 2. Problem Analysis 4

A room might not be available for certain periods of time as it is used for other purposes.
Similarly, a supervisor can block certain time ranges. Thismeans he or she is not available
for supervising an exam during this time.

Each exam is assigned to one or more regular semesters. The exam usually takes place
in these semesters. In other words, students normally write the exam in these semesters.
Each degree program has its own regular semester. For instance, the full-time degree pro-
gram Computer Science has in total 6 regular semesters.

2.2 Problem Description

Currently, all examination plans for the OST are created by hand. Aside from that, the plans
are enormous Excel files that are color-coded and contain a lot of information between the
lines. A VBA script, created around 2000, is in place to add some basic collision detection.
This process is tedious and error-prone. The creation of a single exam timetable takes
several weeks. It is especially complicated as there are a lot of different hard and soft
constraints that have to be met according to certain priorities.

Hard constraints are constraints that cannot be broken. For example, a student cannot
write two exams at the same time, as this is physically not possible. Soft constraints are
constraints that should be fulfilled for a perfect solution but can be broken if needed [1].

The hard constraints:

• Students cannot have two exams at the same time.

• Students can only have two exams that take up to two hours or one exam that takes
more than two hours on the same day.

• Students need a break of at least two hours between exams.

• Supervisors cannot have two exams at the same time.

• There can only be one exam in a room at a time.

• During the summer, exams after noon only take place in roomswith air conditioning.

• The room needs to have the capacity for at least two students more than registered.

• There has to be a break of at least 20 minutes between two exams.

Additional requirements:

• Some exams need to be fixed to a certain time slot.

• Supervisors should have the possibility to block certain time slots.

Chapter 2. Problem Analysis 5

• Rooms can be blocked during certain time slots.

• It should be possible for exams to be split into multiple rooms.

The soft constraints and priorities (1 = high, 5 = low) are:

1. The exams of a regular semester should be distributed as evenly as possible over
the examination session.

2. As few students as possible should have more than one exam on the same day.

3. Exams of an individual student should be distributed as evenly as possible over the
examination session.

4. The exams are distributed as evenly as possible over the examination time regarding
the correction time each lecturer has.

5. Exams should take place in a single room if possible.

All those requirements have to be taken into account for about 250 exams with around
1,500 students.

2.3 The Exam Timetable Problem is NP-Complete

First of all, there might not be a perfect solution to the above-mentioned problem descrip-
tion. There might not be a solution that meets all the requirements and their priorities. But
there is certainly a solution that is acceptable and that is better than any other solution
there is to find.

Why is solving the exam timetable problem not an easy task? The answer to this question
can be found in the theory of problem-solving and computer science, which is known as
computational complexity theory. Problems like our exam planner or in general the cre-
ation of a timetable belong to the problem category of NP-complete problems [2].

An NP-complete problem is a problem that cannot be solved efficiently. This means there
is no existing algorithm that finds an optimal solution to an NP-complete problem in a
reasonable time. A brute force search, i.e. go through all combinations and take the best
one, takes too long [3].

NP means “nondeterministic polynomial time” and tells us that solving the problem be-
comes exponentially harder the bigger the set of data is [4]. For the exam timetable prob-
lem, this means the more students, exams, rooms, etc. are given, the exponentially bigger
the problem becomes. The difference of polynomial (e.g. n5) and exponential (e.g. 2n)
complexity is visualized in Table 2.1. It shows the runtime complexity of two theoretical
processes.

Chapter 2. Problem Analysis 6

For quite a few steps the polynomial process is slower than the exponential. But at a
certain point (n � 64 in the example) the time for the exponential process makes a huge
jump. At the point, n � 128, the time it takes for the exponential process to finish is 78
billion times the age of the universe [4].

Table 2.1: Polynomial and Exponential Runtime Complexity [4]

n n5 2n

1 1 ns 2 ns
2 32 ns 4 ns
4 1.0 µs 16 ns
8 32.7 µs 256 ns
16 1.0 ms 65.5 µs
32 33.5 ms 4.3 ms
64 1.0 s 584 Y ears
128 34.4 s 1021 Y ears

Seeing these results, solving the problem by brute force is not an option. The only possi-
bility available is to try to find algorithms that run efficiently and get as close to an optimal
solution as possible. Given the algorithms available today, finding “the best solution” is im-
possible. But the goal is to find a solution that meets all the requirements in a reasonable
matter of time.

Chapter 3

Research

Key literature for our semester project is the thesis “Constraint-based Timetabling” by
Tomáš Müller from the Charles University in Prague. It shows that timetabling, such as
generating an optimal examination timetable, falls in the category of constraint satisfac-
tion problems. Such problems can be solved with the help of constraint programming [5].

In constraint programming, the problem is described in a declarative manner using vari-
ables and relationships between them. Then a constraint solver takes over the solution
process. In other words, the user states the problem, the computer solves it [6]. In the case
of the exam timetable problem, the task is to allocate exams in time and space (rooms)
respecting various hard constraints and to satisfy aswell as possible a set of desirable ob-
jectives (soft constraints). A typical hard constraint is that exams which take place in the
same room cannot overlap in time. An objective could be that the exams for an individual
student are as evenly distributed over the exam session as possible [5].

3.1 Solution Strategies

Timetabling is a well-known problem across many domains and a lot of research has
been carried out. Hence in the first step, we looked for existing solutions. We found quite
a fewwhich specifically tackle the exam timetable problem. The range varies fromdomain
specific constraint solver libraries to ready-to-use products for schools and universities.

Looking at the source code of a constraint solver library, such as the CPSolver originated
in the dissertation of Tomáš Müller, reveals the true complexity behind it. Developing and
implementing a complete solution by ourselves would notmake any sense nor be feasible
in one semester. But there is not a solution readily available that fits our needs perfectly.
So we have two possible strategies for implementing the exam planner:

7

Chapter 3. Research 8

• Using a constraint solver as a dependency

• Building our solution on top of an existing product

3.1.1 Requirements for Third-Party Software

Independently of the previously stated strategies, we needed some third-party software.
We considered the following criteria for the evaluation of third-party software.

Open source: The software should be easy to adapt/extend according to our specific
needs. Therefore, open source is an important criterion for us. Furthermore, free software
is required as this project has no finance budget.

Customization/API: If the software is not open source it should at least be customizable
or provide a comprehensive API such that all our constraints of our problem description
can be covered.

Active maintenance: The software should be somehow established and actively main-
tained by a company or a community. Otherwise, there is the danger of a deprecated de-
pendency. Furthermore, thewhole topic is still in research. If algorithms in the dependency
improve in the future, our software can benefit as well.

Programming language: Preferably the software is written or can be used in Java or
C#. In these programming languages, we have the most experience and can build upon a
strong type system and a wide range of libraries.

3.1.2 Constraint Solver vs. Existing Products

Only two existing products of our research fulfill the requirements regarding third-party
software. They are listed below with a brief description from their website:

UniTime “UniTime is a comprehensive educational scheduling system that supports de-
veloping course and exam timetables, managing changes to these timetables, sharing
rooms with other events, and scheduling students to individual classes. ... It can be used
alone to create and maintain a school’s schedule of classes and/or exams, or interfaced
with an existing student information system. ” [7]

Chapter 3. Research 9

Free Timetabling Software “FET is open source free software for automatically schedul-
ing the timetable of a school, high-school or university. It uses a fast and efficient time-
tabling algorithm.” [8]

At first glance, building the solution on top of an existing product might be promising. The
biggest advantage is the fact that the domain is already implemented. However, a closer
look reveals crucial disadvantages. Both products are a fairly large piece of software. They
provide features, such as LDAP lookup for data import, that are far beyond the scope of
our semester project. Also, their domain model is more complex than ours. Last but not
least, the algorithms for the optimization problem are given by the product. In conclusion,
building an application based on one of these products, requires a lot of effort for noth-
ing except a tight coupling to the product. Therefore we decided that the strategy with a
constraint solver library will be pursued.

3.2 Evaluation of Constraint Solver

For the constraint solver, we evaluate the following libraries. All of them fulfill the require-
ments we defined for third-party software.

• CPSolver (UniTime.org)

• Choco Solver

• OptaPlanner

3.2.1 CPSolver (UniTime.org)

UnitTime.org provides its own constraint solver (CPSolver) as a library. It is written in Java.
The source code is hosted on GitHub.

Pros

• The constraint solver is optimized for our problem domain.

• There is an “Examination Timetabling Extension” available which provides a domain
model for the constraint solver.

• A Ph.D. thesis explaining the problem and underlying algorithms is available.

Cons

• The library does not have any tests.

• The model provided is tightly coupled to an XML data import.

https://www.unitime.org/index.php?tab=1
https://github.com/UniTime/cpsolver

Chapter 3. Research 10

• There is a lack of documentation, only JavaDoc is available. This makes it difficult
to use custom models.

• The library ismaintained by a small community (less than 5 contributors on GitHub).

3.2.2 Choco Solver

Choco is a free open source Java library for constraint programming. Its source code is
hosted on GitHub.

Pros

• An elaborated documentation with good examples is available.

• The project has automatic tests.

• The library ismaintained by amediumcommunity (about 27 contributors onGitHub).

Cons

• The problem modeling is done on a mathematical level.

3.2.3 OptaPlanner

“OptaPlanner is an AI constraint solver. It optimizes planning and scheduling problems,
such as ... School Timetabling ... and many more.” [9]. The project is sponsored by Red
Hat. OptaPlanner is written in Java and hosted on GitHub.

Pros

• An elaborated documentation with many good examples is available.

• The project has automatic tests and unit test support.

• The library is maintained by a large community (about 94 contributors on GitHub)
and sponsored by Red Hat.

• Constraints apply on plain domain objects. There is no need to model constraints
as mathematical equations.

• Combines sophisticated artificial intelligence optimization algorithms (such asTabu
Search, Simulated Annealing, Late Acceptance, and other meta-heuristics).

Cons

• Documentation could be a bit more structured, especially regarding the different
Java annotations and configurations.

• Constraint definitions must follow a specific pattern.

https://choco-solver.org
https://github.com/chocoteam/choco-solver
https://www.optaplanner.org/
https://github.com/kiegroup/optaplanner

Chapter 4

Solution

This chapter describes our approach to the given task. It includes the reasoning behind
our choice of the constraint solver, the explanation of the software architecture, and the
description of the quality measures we defined.

4.1 Constraint Solver Choice

After the evaluation of some possible constraint solvers (section 3.2) we decided to use
the OptaPlanner. The main reasons are its good and clean documentation, the possibility
to write extensive tests, and the fact that it is written in Java.

The OptaPlanner solves/optimizes a problem based on defined constraints. It does this
by including several different algorithms that perform some kind of “search” and some
heuristic-basedwork. These algorithms are combined to strive for a near-perfect solution.
Why only “near-perfect”, you may ask. To answer this question, the documentation of the
OptaPlanner provides a very good graphic (Figure 4.1). It shows that an algorithm which
returns a perfect solution either needs a very long time or a huge amount of RAM/storage.
You can also see how the different types of algorithms perform on different sizes of in-
put data/variables. Their website also has an extensive comparison table that compares
many different algorithms based on some measures and preconditions [10].

The OptaPlanner allows us to explicitly select and tweak each of those algorithms to get
the optimal result for our problem domain in the shortest amount of time. It also includes
a benchmarking tool to compare those different algorithms with each other. However, for
this semester project, we decided to stick to the default, “no explicit configuration needed”
method, as the whole problem domain and constraints must be implemented.

11

Chapter 4. Solution 12

Figure 4.1: Scalability of Optimization Algorithms [10]

4.2 Problem Modeling and Implementation with the OptaPlanner

The OptaPlanner is domain independent, which means there are no ready-to-use or pre-
configured domain models available. The problem domain has to be modeled by our-
selves and the OptaPlanner needs to be instructed about how to understand it. This is
donewith Java annotations. Themost important annotations are:@PlanningSolution,
@PlanningEntity and @PlanningVariable.

4.2.1 Model

The @PlanningSolution is the heart of the model, the place where everything comes
together. In the case of the exam scheduler, this is the exam timetable (Listing 4.1). It con-
tains a list of all exams (the planning entities) and provides the available rooms and time
slots, which can be assigned to each exam’s planning variables. The planning variables’
values are also called problem facts as they do not change during the solving process.

Chapter 4. Solution 13

1 @PlanningSolution
2 public class ExamTimetable {
3 @PlanningScore
4 private HardSoftScore score;
5

6 @PlanningEntityCollectionProperty
7 private List<Exam> exams;
8

9 @ValueRangeProvider(id = "roomRange")
10 @ProblemFactCollectionProperty
11 private List<Room> rooms;
12

13 @ValueRangeProvider(id = "timeGrainRange")
14 @ProblemFactCollectionProperty
15 private List<TimeGrain> timeGrains;
16

17 public ExamTimetable(/*...*/) {/*...*/}
18 }

Listing 4.1: ExamTimetable Class of the OptaPlanner Model

The @PlaningEntity represents the part of the model that needs to be planned. In our
case the exam is the planning entity (Listing 4.2). It has a room and a time slot planning
variable (annotated with @PlanningVariable). These planning variables indicate when
and where the exam takes place and have to be assigned by the constraint solver.

1 @PlanningEntity
2 public class Exam {
3

4 @PlanningId
5 private long id;
6

7 @PlanningVariable(valueRangeProviderRefs = "roomRange")
8 private Room room;
9

10 @PlanningVariable(valueRangeProviderRefs = "timeGrainRange")
11 private TimeGrain startingTimeGrain;
12

13 /* Further fields and functions ... */
14 }

Listing 4.2: Exam Class of the OptaPlanner Model

The OptaPlanner supports multithreaded solving. This allows searching for a solution on
multiple threads simultaneously. For this functionality, OptaPlanner needs tomapproblem
facts and planning entities to an ID. This ID is used to rebase a move from one thread’s
solution state to another’s. The ID is defined by the @PlanningId annotation [11].

Chapter 4. Solution 14

In addition, OptaPlanner clones the problem facts and planning entities for each new best
solution. This brings some challenges with it. Back referencing a planning entity from a
planning variable cannot bemade at initialization time as the assignment is changed over
and over again. To solve this problem, so-called “shadow variables” can be used. They get
automatically updated by the OptaPlanner [12].

The same back referencing problem occurs when working with classes/objects that have
no meaning to the OptaPlanner. In our case, a student writes exams. Therefore, an exam
has students assigned to it. Those students per se do not matter to the OptaPlanner as
it cannot move them around. The students are assigned to exams before handing over
the problem statement to the OptaPlanner and they must stay there. They are “locked” to
the exam. As a result, the OptaPlanner ignores them, which means that they are excluded
from the OptaPlanner context.

To tackle this issue, we first tried to add a reference from the exam to the students at the
initialization. However, this did not work. As previously mentioned, OptaPlanner creates
clones of the planning entities for each new solution. After some investigation, it turned
out to be a common problem that can be solved by instructing the OptaPlanner to clone
the referenced objects together with the planning entity [13].

4.2.2 Constraints

After creating the domain model, the OptaPlanner knows what values it can assign to the
planning variables to achieve the desired output, i.e., an exam time table. However, up to
this point, the OptaPlanner has no indication of what a valid exam time table is and how to
measure or to decide that the generated solution is any good. At this point the constraints,
and with it the real work, come into play.

The OptaPlanner and many other solvers differ between hard and soft constraints. As
described in section 2.2, hard constraints should not be broken by any means. On the
other hand, soft constraints are constraints that should be fulfilled to get a better solution.
Depending on the hard constraints and the input data, this might not even be possible.
Nevertheless, the solver tries to optimize the soft constraints as far as possible.

Constraints can be defined with OptaPlanner’s ConstraintStream API, which is inspired by
the Java Stream API and SQL [14]. Listing 4.3 shows the definition of a hard constraint.
Soft constraints are defined in the same way. An example is given in Listing 4.4. The code
comments describe each part of the constraints in detail.

The starting point of a constraint is typically the creation of pairs of exams, as the compar-
ison of their properties is the primary subject of interest. This step can optionally include a
join via attributes. The constraint roomHasTwoExamsAtTheSameTime (Listing 4.3) uses

Chapter 4. Solution 15

this to get the exam pairs whose exams have the same room assigned, i.e., take place in
the same room. Then one or multiple filters are applied. The filters contain the main logic
of the constraints. Their job is to only let exam pairs through that match the constraint.
After that, a penalty for a negative score or a reward for a positive score is given.

A penalty/reward can be hard or soft and of different weights, which can be adjusted by a
custom weight function. The return value of this function multiplied by the base score re-
sults in the total score for a constraint match. If no weight function is provided, the default
weight of one is used. The constraint studentsHaveMoreThanOneExamOnSameDay
(Listing 4.4) has a weight function that counts the number of students that have to write
both exams of the exam pair. Hence, the more students are affected, the more significant
the impact of the score value becomes.

1 public class RoomConstraints extends AbstractConstraints {
2 // ...
3 public Constraint roomHasTwoExamsAtTheSameTime() {
4 // A room can accommodate at most one exam at the same time.
5 return constraintFactory
6 // Two exams that have the same room assigned get grouped to a pair.
7 .fromUniquePair(Exam.class, Joiners.equal(Exam::getRoom))
8 // This filter only lets through exam pairs
9 // whose exams are overlapping in time.

10 .filter(Exam::areOverlapping)
11 // Each exam pair, whose exams are in the same room at the same time,
12 // get a penalty of 100 hard.
13 .penalize(
14 "Room has two exams at the same time",
15 HardSoftScore.ofHard(100)
16);
17 }
18 // ...
19 }

Listing 4.3: A Hard Constraint of the RoomConstraints Class

1 public class StudentConstraints extends AbstractConstraints {
2 // ...
3 Constraint studentsHaveMoreThanOneExamOnSameDay() {
4 // As few students as possible should have
5 // more than one exam on the same day.
6 return constraintFactory
7 // Two exams get grouped to a pair.
8 .fromUniquePair(Exam.class)
9 // This filter only lets through exam pairs

10 // whose exams are on the same day.
11 .filter(Exam::areOnSameDay)
12 // This filter only lets through exam pairs

Chapter 4. Solution 16

13 // whose exams have common students.
14 .filter(Exam::haveCommonStudents)
15 // Each exam pair, whose exams are on the same day and have
16 // common students, get penalized with a soft score of 1 per student
17 .penalize("As few students as possible should have more than one exam ê

on the same day.",
18 HardSoftScore.ofSoft(1),
19 // This helper function returns the number of students,
20 // that have two exams, i.e. write both exams of the exam pair.
21 StudentConstraintHelper::countStudentsWithMoreThanOneExamOnSameDay
22);
23 }
24 }

Listing 4.4: A Soft Constraint of the StudentConstraints Class

4.2.3 Score Function

The constraint solver’s goal is to maximize the score function. A higher value indicates a
better exam timetable. The best way to illustrate the score function is to look at one of
our many runs, attempting to create a near-perfect exam schedule. As input, we have the
real data from the fall semester of 2019. It contains 196 exams with 1,322 students that
should be put into 20 rooms over threeweeks.When starting the solving process, the plan-
ner starts with an initial score of -392init/0hard/0soft, where -392 is the negative
sum of all uninitialized planning variables (�

°
of uninitialized planning variables).

As there are 196 exams with two planning variables (room and time slot), the sum is
2�196 � 392. The values 0hard and 0soft are irrelevant at themoment as for calculating
the scores, only planning entities with assigned planning variables are evaluated.

In the first step, the solver tries to assign a room and time slot for each exam based on
some heuristics. This step is called the construction phase and is partially random. With
the help of a seed, it is set up to be reproducible, though. This phase takes in our case,
on a machine with 16 virtual cores (an Intel i9-9900k) and a clock speed of up to 5 GHz,
about 5 minutes. When it is finished, we get the first real score: -4hard/-169soft.

To calculate the shown score, the OptaPlanner sums up the score of all matches for each
constraint. The score of a single match is the product of the weight and the base score,
according to the constraint definition explained in subsection 4.2.2. More formally, the
score function is expressed as follows:

Chapter 4. Solution 17

Let C be the constraints, sc the constraint base score, Mc the matches of the constraint
c P C , and wm the weight of the matchm PMc:

Score �
¸

cPC

¸

mPMc

wm � sc

Figure 4.2: OptaPlanner Score Function

A solution is feasible if the hard score is 0, e.g., 0hard/-82soft. As for now, all de-
fined constraints give a penalty (negative score). Therefore, the maximum of the score
function is 0. A score of 0hard/0soft indicates a perfect solution, i.e., all hard and soft
constraints are 100% fulfilled. After this being clarified, we will continue with the solving
process.

In the next step, the solver takes that “constructed” first result and continues with the
second phase, the local search phase. By default, a hill-climbing algorithm is used. “This
one simply tries all selectedmoves and then takes the basemove,which is themovewhich
leads to the solution with the highest score.” [15]. This is by far not an optimal solution as it
can get stuck in a local optimum (a place where every changemakes the result worse, but
better solutions would exist out there). But it gives us an easy and simple first approach to
solve our problem. Later on in the process, different algorithms that have the potential for
much better solutions can be chosen. However, this is not part of our semester project.

After running this phase for around twohours, we endedup at a score of0hard/-35soft.
This is not a perfect score, but the best solution found in the given time. It is even possi-
ble that there is no perfect solution for this input data as we are after all working on an
NP-complete problem.

4.3 Architecture and Design

Our systemarchitecture shown in Figure 4.3 follows a classic approach. The core is anAPI
application running SpringBoot, which provides an easy to set up and robust environment
running Java. The data is persisted in a database. As the data schemawas knownup-front,
we went for a RDBMS. The database of our choice is PostgreSQL because it is open-
source, widely used in a lot of enterprise solutions, and a system we are familiar with.
Since most data queries are simple CRUD operations, we use JPA to map the entities in
the Java code to the database.

The user can interact with the system via a browser-based GUI. For this, we use Angular.
The Angular framework provides a robust structure and a huge set of ready-to-use tools.

Chapter 4. Solution 18

The single-page application and the Swagger API documentation is served via the Spring
MVC included in the SpringBoot container. The client-server architecture allows to deploy
the backend on a high performance server, while the frontend can be accessed by any
“normal” machine.

Exam Scheduler
[Software System]

Exam Planer
[Person]

Plans the exams

Visits web page
[HTTPS]

Views exam schedules,
adds new data,

starts solving process

Web Application
[Container: Java, Spring MVC, Swagger]

Delivers the documentation and
the Singel Page Application

Single Page Application
[Container: Angular (Typescript/HTML/SCSS)]

Provides functionality to visualize
and manage the exam schedules

API Application
[Container: SpringBoot]

Provides exam scheduler
capabilities with one ore more

different solvers via JSON/HTTPS

Database
[Container: PostgreSQL]

Stores exam scheduler data

Delivers to the user's web browser

Makes API calls to
[JSON/HTTPS]

Reads from and writes to
[JPA]

Figure 4.3: C4 – Container Diagram

4.3.1 Core System and API Application Architecture

As the constraint solver choice is not definite andmight be subject to change in the future,
we must design our core system with that in mind. As seen in the architecture diagram
(Figure 4.4), our system is split into two parts. On the left, we have our core functionality,
including database access, REST providers, models, and control unit. On the right, we have
our solver implementation(s). The system is explicitly designed to provide the possibility
to replace or add a solver without having to change something in the core logic. Everything
is based on a solver connection interface that all solvers have to implement. This interface
requires the functionality to load the coremodel as input and to return a solved coremodel
as output. How an individual solver does the solving is entirely open, what is relevant is
the resulting solution and its score.

Chapter 4. Solution 19

In the case of the OptaPlanner (see section 4.2 for details), the setup of the solver is done
with code annotations. The constraints are defined in a Java Stream API like language,
and an internal scoring system calculates the score.

To compare multiple solvers to one and another, it would be necessary to implement an
independent scoring system. As we currently use only one solver and implementing an
additional solver is time-wise out of this project’s scope, we leave it at that time.

core

solvers

opta

Further/Alternative Solvers...

service.rest

business_logic

data_access

Repositories and Entities with JPA

model

Separate, non persisted models like exception

solver_connection

connverters

Domain model converters from
Core to Opta and reverse

domain

solver

Solver specific configurations and
constraints

OptaExamScheduler

OptaExamSchedulerModel

ExamScheduler

ExamSchedulerModel

ExamSchedulerFactory

Figure 4.4: Architecture Diagram

4.4 Visualization

To improve the quality of the results our exam scheduler produces, we need away to verify
them. Unit tests are great to check the correctness of the constraint. However, they do not
provide an intuitive understanding of the exam schedules. Therefore, we implemented a
visualization tool that displays the calculated exam schedule as a big table (Figure 4.5).
The columns represent the days and the rows the time slots. Exams are placed into those
slots which provide the exam name and the room where it takes place.

This visualization makes it very easy to see conflicts between exams and provides details
on how the scheduler places the individual exams throughout the entire given time range.
A detail page is not available right now, but it logs all details to the browser’s console by
clicking on an exam.With the help of filters, we can perform some additional solution eval-
uation regarding exams for single students, exams in a specific room, and the distribution
of exams for a regular semester (Figure 4.6).

Chapter 4. Solution 20

Even though this tool is still very much work-in-progress, especially regarding colors and
design, it helped us a lot to understand how we can improve the constraints and what
errors are hidden in the data.

Figure 4.5: Visualization Tool – Overview

Figure 4.6: Visualization Tool – Room Filter

Chapter 4. Solution 21

4.5 Data Import And Export

The input data is given as multiple Excel files. To process the data, we provide a data
import API. It validates the input data and converts it into our solver independent data
model. If the data is valid, it is persisted in the database, from where it can be used to
create exam schedules. The principle “garbage in, garbage out” also applies in the case
of the exam scheduler. Therefore, a rather aggressive validation is in place that detects
invalid data early. This ensures that the system includes only valid data. The validation
rules and input data format is implemented in a flexible and extensible way. Adding new
data for additional constraints is very easy. Once an exam timetable is generated, it cannot
only be visualized in the web browser, as shown in section 4.4, but also be exported as a
spreadsheet or a JSON file. Exported exam timetables can therefore be used easily in an
external application.

4.6 Quality Assurance

To assure the quality of our application logic, we have written around 350 unit tests for
all classes containing some kind of logic. Integration tests are in place for the database
queries, data model, and the Excel importer. We have not explicitly defined an overall test
coverage goal as we aim for a component-wise test coverage as high as possible to catch
possible errors as early as possible. The solver currently has a line test coverage of 92%,
and the data access layer has a test coverage of 85%. The business logic and the (REST)
services are subject to change and are therefore not that strictly tested.

As described in the previous section, for testing the quality of the solution, we currently
rely on the score provided by the OptaPlanner. However, for ensuring the correctness of
the defined constraints, tests are in place that explicitly tests each constraint on its own.

The front-end application that we use for visualizing the results and, later on, as a way for
the user to interact with the system currently has no tests. This is due to the time restric-
tions and the fact that this system is not mission-critical. When continuing this project in
the future, testing the logic in the front-end is one task that has to be done.

Chapter 5

Results

In our semester project, we successfully developed the first version of the automated
examination scheduler for the OST. We implemented a constraint solver independent ar-
chitecture andmany features, such as a data import API, the visualization of exam timeta-
bles, and the possibility to export them. On top of that, we implemented the OptaPlanner
as constraint solver, which actually solves the timetable problem. For this, we created an
OptaPlanner specific model for the exam timetable problem and a converter that trans-
lates our solver independent data model to this specific model and back. Last but not
least, we implemented the constraints that ensure valid and optimized exam timetables.
Currently, the following constraints are implemented.

Hard constraints:

• Students cannot have two exams at the same time.

• Students can only have two exams that take up to two hours or one exam that takes
more than two hours on the same day.

• Students need a break of at least two hours between exams.

• Supervisors cannot have two exams at the same time.

• There can only be one exam in a room at a time.

• The room needs to have the capacity for at least two students more than registered.

• There has to be a break of at least 20 minutes between two exams.

Soft constraints:

• As few students as possible should have more than one exam on the same day.

• Exams should take place in a single room if possible.

22

Chapter 5. Results 23

Tomake sure the examschedulerworks correctly, a total of about 350 automated tests are
in place. Around 175 tests of them test theOptaPlanner problemmodel and its constraints.
Moreover, we validated the examschedulerwith the real datasets of the fall semester 2018
and 2019.

In the rest of this chapter, we present the generated exam schedules and analyze them
in detail. We also compare an existing examination schedule, created by a human, with a
solution made by our exam scheduler. Last but not least, we try to disprove a thesis given
by our customer: “An exam schedule in which all students have at most one exam per day
is impossible.”

While defining the problemmodel and constraints, we encountered quite a fewchallenges.
We had to look for solutions, and sometimes trade-offs were inevitable. Before jumping
directly into the results, it is recommended to read the next section first. It gives additional
information about the model’s internals, which are crucial for correctly understanding the
following results.

5.1 Simplifications of the Current Model

It is important to state that the current problem model for the OptaPlaner underlies some
simplifications due to findings during the requirement analysis and the limited time of the
semester project. These simplifications and the reasoning for them are listed below.

Exams can take place only in one room: The largest room is room “4.101” (Aula). It has
a capacity of 140 students. Typically, there are around five exams that havemore than 140
registered students. These exams urge the need to schedule exams in multiple rooms.
However, adding this functionality would make themodel more complicated and increase
the search space a lot.

Since there are only a few exams that need this feature, we decided not to implement
it. This leads to the problem that some exams cannot be scheduled at all. To solve this
issue, we increased the capacity of room “4.101” to 200. So exams with more than 140
registered students are scheduled in room “4.101”. Since this room’s capacity is, in reality,
smaller, at least a second room needs to be searched manually. Finding another room is
not a problem as there are usually enough rooms available. In the worst case, the exam
could take place in three rooms. This trick is a bit of a trade-off we had to make. But in
our opinion, an acceptable one for the first version of the exam scheduler. Note that this
design decision also ensures the constraint “Exams should take place in a single room if
possible.” implicitly.

Chapter 5. Results 24

An exam has only one supervisor: During the requirement analysis, we noticed that
some exams have many supervisors. We asked ourselves whether all of them need to
be considered for the constraint “Supervisors cannot have two exams at the same time.”.
While clarifying this question with our customer, we found out that not all listed persons
supervise the exam. This list is instead a pool of people that might supervise the exam.
The final supervisors will be determined after the creation of the examination schedule.
Therefore, considering all listed people makes no sense. Ideally, only the persons are pro-
vided that supervise the exam. However, this is not possible at the moment.

We recommend checking whether the process can be changed such that the supervisors
are known upfront. Alternatively, only one person who is responsible for the exam should
be named. As a workaround, we consider only the first person on the given list.

Exams cannot be fixed to a particular time slot: According to the requirements, some
exams need to be fixed to a particular time slot. At first glance, this feature does not look
that complicated. However, thinking of a concrete implementation proves the opposite.
First of all, this must be possible in the GUI. Fixing the exams via another Excel file is a
non-solution as in this processmany things can gowrong and the usermust bewarned ap-
propriately. For instance, the user might fix some exams that result in an infeasible exam
schedule. Moreover, OptaPlanner is able to create feasible and optimized exam schedules
without this feature. Because of these reasons, we gave this feature a low priority.

Supervisors cannot block certain time slots: Another requirement is that supervisors
can block certain time slots. However, according to the task description, this feature is
not planned in the first version. Nevertheless, we checked its feasibility. As for now, the
required information is not available in the input data. Since the supervisors are given as a
list of names for each exam, it might be tricky to provide this information. If this feature is
still considered in the future, we recommend providing the supervisors in a separate list.
This list can then include the information about the blocked time slots. In addition, each
supervisor should have a unique ID that can be referenced in the list of exams.

Computer rooms are not considered: There are only a few exams that need a computer
room. However, most of them have somany registered students that theymust take place
in multiple rooms. Compared to standard rooms, computer rooms have a relatively small
capacity. As splitting up exams into multiple rooms is not yet possible, this simplification
follows. Instead of removing these exams, we decided not to consider that an examneeds
a computer room. This way distorts the result less as the exams are scheduled. However,
finding a computer room for these exams manually might be challenging or even infeasi-
ble as there are not many computer rooms available.

Chapter 5. Results 25

Rooms are always available: In our first solution, rooms cannot be blocked during par-
ticular time slots. We made this simplification as all rooms were always available in the
input data of the fall semester 2018 and 2019. Nevertheless, the data model is ready for
this feature. Once the input data format is defined, a constraint regarding the unavailable
periods can be implemented.

Room air conditioning is not considered: “During the summer, exams after noon only
take place in roomswith air conditioning.” is the only hard constraintwedid not implement.
It is only relevant for spring semesters. Since we use only datasets from fall semesters
for the validation, we gave this constraint a low priority.

An even distribution of exams over the examination session is missing: Currently, the
soft constraints regarding an even distribution of exams over the examination sessions
are not implemented. This means the OptaPlaner does not strive for even distribution of
exams during the optimization process.

5.2 Analyzing the Generated Exam Schedules

Although we use a simplified model, we can generate feasible exam schedules and do
even some optimizations. It is time to look into some test results. For validating our exam
scheduler, or more precisely the underlying constraint solver, we have defined two criteria.

The solver should work with different input data: Training or tweaking an algorithmwith
only one dataset can lead to overfitting. Overfitting means that the algorithms learn or
include some specifics of the input data that do not apply to another dataset. We do not
expect the algorithms used by the OptaPlanner to learn froma dataset. However, tweaking
the weights of the constraints could still result in some sort of overfitting. To verify that
this is not the case, we took a completely new dataset, never seen and used before, and
ran it through our exam scheduler.

During development we used the dataset of the fall semester 2019. For the validation we
used the dataset of the fall semester 2018. The result (Figure 5.1) shows that the new
dataset works as well as the other one.

The solver should run no matter how powerful the machine is: During development, we
noticed a strange behavior of the scheduler when using different machines for solving. It
is clear that different machines and Java versions can start on another seed, leading to
slightly different results. However, the differences were significant.

Chapter 5. Results 26

As an example, we take the solving process for the fall semester of 2018. On a powerful
computer with current high-end specs, the construction phase takes about 5 minutes and
gives the first score of -8hard/-248soft. However, when running the solving process
on a less powerful machine, a high-end laptop from 6 years ago, the first result we see is
-1228hard/-110soft after about 45 minutes. We expected the laptop to have longer
for the construction phase, but the much lower score is quite surprising.

In the documentation there is no explanation of this behavior. Our guess is that the solver
has internally some limits that prevent the construction phase from running too long.
These limits are most likely based on the number of moves the solver can do per time
interval, but we cannot tell for sure.

After the construction phase, the local search phase started. To determine whether both
machines reach a similar score, we let the solvers run overnight for around half a day. The
score during the local search phase on the laptop is shown in Figure 5.1. The hard and soft
scores are stacked such that their sum represents the total score. The first data point is
the score after the construction phase. Hence, the x-axis starts at about 45 minutes.

Figure 5.1: Score During Local Search Phase of Fall Semester 2018 (20 min Time Slots)
Laptop (CPU: i7-4710MQ – 4 Cores @ 2.6GHz, RAM: 16GB @ 1600MHz)

The diagram illustrates well that the OptaPlanner first minimizes the hard score. While the
hard score successively approaches the value zero, the soft score jumps up and down.
After about 6 hours, the hard score reaches its global minimum. At this point, the solver
has found a feasible solution, and the soft constraints are left to optimize. From now on,

Chapter 5. Results 27

all further better solutions are feasible and have a higher soft score. At a certain point,
finding a better solution takes quite a long time. Three hours passed between the last two
results without finding a better solution. After around 14 hours, we stopped the solving
process. With a final score of -0hard/-36soft, the laptop finds a similarly good result
as our powerful test machine. Therefore, we can conclude that the solver also runs on
less powerful machines.

When implementing the OptaPlanner problem model, we added the option to change the
time slot duration. When changing the time slot duration, we change the number of pos-
sibilities the constraint solver can arrange the exams. Hence, the shorter the time slot,
the more flexible the model becomes. With a more flexible model, it is more likely to fulfill
all constraints. However, with more available options, the time to go through all possible
solutions increases.

The question is whether we get better results with smaller time slots. Initially, we set the
duration to 20 minutes, which is the minimum break between two exams. This time slot
size works quite well across different input datasets. However, exams lasting 90 minutes
waste a gap of 10 minutes, as these exams do not fit into 20-minutes-slots perfectly. To
cover this corner case, we set the time slot duration to 10 minutes. However, we did not
notice a significant improvement in the resulted score. This experiment shows that the
real problem is not the wasted time, but much more the fact that there is no way around
that some students have multiple exams on the same day. This finding is also in line with
the thesis given by our customer: “An exam schedule in which all students have at most
one exam per day is impossible.”

To verify the thesis, we ran the exam scheduler on our powerful test machine and a time
slot duration of 10 minutes. The scores of the solutions found during the local search
phase are shown in Figure 5.2. After running the solving process for about half a day, we
ended up with a score of -0hard/-30soft. According to the logs, the soft score of -30
comes alone from the constraint that makes sure as few students as possible must write
more than one exam on the same day. With this result, we cannot disprove the thesis as
we could not find a solution that fulfills the constraint completely, at least not in the given
time with the current implementation of the exam scheduler.

To interpret the score, we recall the explanation of the constraint, given in Listing 4.4. In
summary: Every time a student has to write two exams on the same day a penalty of one
soft is added. So in total, it happens 30 times that a student must write two exams on
the same day. To find out how many students are affected per se, further investigation
is needed, but it is safe to say that at most 30 students have to write two exams on the
same day. Note that no student has to write more than two exams on the same day.

Chapter 5. Results 28

Figure 5.2 illustrates also that the most significant improvements are made within the
first two hours. When in need of a “quick” solution, the search for an exam schedule could
be stopped around the point where the ratio of improvement over time gets too small.
However, for a real exam schedule, it would probably make sense to let them run another
day or even up to a week, to max out the quality of the resulting time table.

Duration in Hours

-800

-600

-400

-200

0

1:00:00 2:00:00 3:00:00 4:00:00 5:00:00 6:00:00 7:00:00 8:00:00 9:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00

Soft Hard

Figure 5.2: Score During Local Search Phase of Fall Semester 2019 (10 min Time Slots)
Tower PC (CPU: i9-9900K – 8 Cores @ 5GHz, RAM: 32GB @ 3200MHz)

5.3 Comparison with a Manually Created Exam Schedule

This section compares the generated exam schedule with the original one from the fall
semester of 2019. For the comparison, we must analyze the original exam schedule first.
However, analyzing a partially unstructured Excel file is error-prone and time-consuming.
Therefore, we transformed the Excel file into our data model. This process required some
manual work, but with some Python scripts, at least some parts could be automated.
Nevertheless, the time spent is definitively worth it, as we can run SQL queries to analyze
the exam schedule and display it with our visualization tool.

First, we want to find out how many students have two exams on the same day. For this,
we wrote a SQL query. Its result is shown in Table 5.1. The query also provides informa-
tion on how many days students have to write two exams. In the original exam schedule,
192 students have to write two exams on the same day. Whereas, in the generated exam
schedule, there are only 28 students.

Chapter 5. Results 29

Table 5.1: Comparison of Original and Generated Exam Schedule
Regarding Number of Students with Two Exams on Same Day

Number of Days
with Two Exams

Number of Students with Two Exams on Same Day

In Original Schedule In Generated Schedule

1 170 26

2 20 2

3 2 0

Total 192 28

Looking at the visualization of both examination schedules (Figure 5.3 and Figure 5.4)
some interesting findings are revealed. In the original exam schedule, there are no exams
scheduled between 12:00 and 12:45, such that all students can have lunch at an ordinary
lunchtime. On the contrary, in the generated exam schedule, there are many exams during
this period. The reason for this is due to the way the examination planner creates the time
tables. He or she assigns the exams in such away as that each room hasmore or less two
exams in themorning and two exams in the afternoon. Therefore, the time range over noon
remains free. Figure 5.5 shows an exam schedule for a single room and illustrates this
patternwell. In contrast, theOptaPlanner uses granular time slots of 10minutes.Moreover,
no constraint tells the OptaPlanner not to put exams about noon. Therefore, exams are
also scheduled during lunchtime. Should such a constraint be added in the future? We
cannot answer this question, as we are not the one to decide. It is a question for the
examination planning team or even the school management.

Figure 5.3: Original Exam Schedule (Fall Semester of 2019)

Chapter 5. Results 30

Figure 5.4: Generated Exam Schedule (Fall Semester of 2019)

When we applied the filter for room “4.101” on the original exam schedule, we noticed
that sometimes two exams are scheduled simultaneously. According to the comments
in the Excel file, these exams are scheduled on purpose like this. The visualization of the
exam schedule for room “4.101” is shown in Figure 5.5. In total, five times two exams take
place at the same time. These exams pairs are marked in red. The OptaPlanner is not
allowed to schedule two exams at the same time. Hence, in this case, he had to schedule
five exams at another time. Providing the information, what exams can take place at the
same time could undoubtedly improve the exam schedules’ quality and should therefore
be considered in the next version.

Figure 5.5: Original Exam Schedule (Fall Semester of 2019) for the Room 4.101

Chapter 6

Conclusion

With our semester project results, we have shown that creating an examination timetable
for the OST can be automated. Our developed exam scheduler cannot only determine
whether there is a feasible examination schedule but also optimize it regarding several
constraints. We do not have a production-ready model yet. However, the comparison of a
generated examination schedule with the original one has shown the potential to create
better examination timetables. We laid a reasonable basis for further development. Once
the model is enhanced, scheduling the exams becomes much more comfortable, and the
manual work can be reduced from several hours to an absolute minimum.

In our semester project, we sketched several ideas to improve the exam scheduler. At this
point, we would like to summarize them tomake further development as easy as possible.
We see four main topics that should be tackled in further development:

• Enhancing the problem model

• Analyzing and improving the business process

• Transforming the visualization tool into an interactive GUI

• Optimizing the solving process

Enhancing the problem model: Currently, the constraint solver uses a simplified model.
The simplifications are listed in section 5.1. The problemmodel should be enhanced such
that it fulfills all constraint as listed in section 2.2.

Analyzing and improving the business process: Some simplifications in section 5.1 are
due to findings during the requirement analysis. Therefore, enhancing the problem model
is not just amatter of implementation.We strongly recommend to analyze and improve the

31

Chapter 6. Conclusion 32

exam scheduling process together with the examination planning team. In addition, the
results regarding generated exam schedules should be discussed as well. This ensures
that only constraints are implemented that are really required.

Transforming the visualization tool into an interactive GUI: Currently, the GUI is mainly
used to visualize the generated exam schedule. The data import and export is done via the
Swagger API documentation. All functionality required to generate examination schedules
should be available in the GUI, such that the examination team can use the application.
Apart from that, some advanced analytic tools such as the detailed score information
would help to understand the generated time tables.

Optimizing the solving process: Finally, the OptaPlanner provides many ways to tune
the solving process, including adjusting the constraint weights, using different search al-
gorithms, and providing some advanced heuristics for the construction phase. It would
be interesting to compare different configurations and evaluate the most efficient one,
especially with an enhanced problem model.

Appendix A

Code Stats

A.1 Lines of Code (LOC)

Table A.1: Lines of Code (LOC)

File Type Count LOC

java 88 3166

java (Test Code) 42 6184

typescript 13 303

html 3 82

Total 146 9735

A.2 Test Coverage

Figure A.1: Passed Tests

Figure A.2: Test Coverage

33

Glossary

Angular Angular is a TypeScript-based open-source web application framework led by
the Angular Team at Google and by a community of individuals and corporations.
https://angular.io/ 17

Application Programming Interface An application programming interface (API) is a
computing interface that defines interactions between multiple software
intermediaries [Wikipedia]. 36

Jakarta Persistence API Jakarta Persistence (JPA; formerly Java Persistence API) is a
Jakarta EE application programming interface specification that describes the
management of relational data in enterprise Java applications. [Wikipedia]. 36

Java Stream API Method to work with collections of data in a simple stream like way,
where operations and filters can be added. This feature was added in Java 8. 14, 19

JavaDoc Javadoc is a documentation generator created for the Java language for
generating API documentation in HTML format from Java source code [Wikipedia].
10

Lightweight Directory Access Protocol The Lightweight Directory Access Protocol is an
open, vendor-neutral, industry standard application protocol for accessing and
maintaining distributed directory information services over an Internet Protocol
network [Wikipedia]. 36

Model View Controller Visual Basic for Applications. Model–view–controller is a
software design pattern commonly used for developing User interface that divides
the related program logic into three interconnected elements [Wikipedia]. 36

OST Eastern Switzerland University of Applied Sciences: In this document focused on
the campus Rapperswil-Jona. 37

34

https://angular.io/

Glossary 35

PostgreSQL PostgreSQL, also known as Postgres, is a free and open-source relational
database management system emphasizing extensibility and SQL compliance
[Wikipedia]. 17

regular semester A regular semester is the semester where an exam normally takes
place in. For example: The module “Objektorientiere Programmierung”, short OO, is
in the first semester of your IT-studies. Therefore the regular semester of the
module/exam OO is I1, which means “Informatik, 1. Semester” 5, 19

SpringBoot Spring Boot is an open source Java-based framework used to create a
micro Service. It is used to build stand-alone and production ready spring
applications. https://spring.io/ 17, 18

Swagger Swagger is an Interface Description Language for describing RESTful APIs
expressed using JSON. Swagger is used together with a set of open-source
software tools to design, build, document, and use RESTful web services. Swagger
includes automated documentation, code generation, and test-case generation.
https://swagger.io/ 18, 32

Visual Basic for Applications Visual Basic for Applications. An event driven
programming language implemented by Microsoft and integrated in the entire
office suite [Wikipedia]. 36

https://spring.io/
https://swagger.io/

Acronyms

API [Application Programming Interface] 8, 14, 17, 21, 22

CRUD Create, Read, Update, Delete 17

GUI Graphical User Interface 17, 24, 32

JPA [Jakarta Persistence API] 17

LDAP [Lightweight Directory Access Protocol] 9

MVC [Model View Controller] 18

RAM Random Access Memory 11

RDBMS Relational Database Management System 17

REST Representational State Transfer 18, 21

SQL Structured Query Language 14, 28

VBA [Visual Basic for Applications] 4

36

Abbreviations

OST Eastern Switzerland University of Applied Sciences (See: OST) 1, 4, 22, 31

37

List of Figures

2.1 Domain Model . 3

4.1 Scalability of Optimization Algorithms [10] 12
4.2 OptaPlanner Score Function . 17
4.3 C4 – Container Diagram . 18
4.4 Architecture Diagram . 19
4.5 Visualization Tool – Overview . 20
4.6 Visualization Tool – Room Filter . 20

5.1 Score During Local Search Phase of Fall Semester 2018 (20min TimeSlots)
Laptop (CPU: i7-4710MQ – 4 Cores @ 2.6GHz, RAM: 16GB @ 1600MHz) . . . 26

5.2 Score During Local Search Phase of Fall Semester 2019 (10min Time Slots)
Tower PC (CPU: i9-9900K – 8 Cores @ 5GHz, RAM: 32GB @ 3200MHz) . . . 28

5.3 Original Exam Schedule (Fall Semester of 2019) 29
5.4 Generated Exam Schedule (Fall Semester of 2019) 30
5.5 Original Exam Schedule (Fall Semester of 2019) for the Room 4.101 30

A.1 Passed Tests . 33
A.2 Test Coverage . 33

38

List of Tables

2.1 Polynomial and Exponential Runtime Complexity [4] 6

5.1 Comparison of Original and Generated Exam Schedule
Regarding Number of Students with Two Exams on Same Day 29

A.1 Lines of Code (LOC) . 33

39

List of Listings

4.1 ExamTimetable Class of the OptaPlanner Model 13
4.2 Exam Class of the OptaPlanner Model . 13
4.3 A Hard Constraint of the RoomConstraints Class 15
4.4 A Soft Constraint of the StudentConstraints Class 15

40

Bibliography

[1] (2020, Nov.) OptaPlanner User Guide – A planning problem has (hard and soft)
constraints. Red Hat, Inc. [Online]. Available:
https://docs.optaplanner.org/8.0.0.Final/optaplanner-
docs/html_single/index.html#aPlanningProblemHasConstraints

[2] M. R. Garey and D. S. Johnson, Computers and Intractability, 1979.

[3] (2020, Nov.) OptaPlanner User Guide – A planning problem is NP-complete or
NP-hard. Red Hat, Inc. [Online]. Available:
https://docs.optaplanner.org/8.0.0.Final/optaplanner-
docs/html_single/index.html#aPlanningProblemIsNPCompleteOrNPHard

[4] A. Müller, “Automaten und Sprachen,” 2020. [Online]. Available:
https://github.com/AndreasFMueller/AutoSpr

[5] T. Müller, “Constraint-based Timetabling,” Ph.D. dissertation, Charles University in
Prague Faculty of Mathematics and Physics, 2005. [Online]. Available:
https://www.unitime.org/papers/phd05.pdf

[6] E. C. Freuder, “In pursuit of the holy grail,” Constraints, vol. 2, no. 1, pp. 57–61, 1997.
[Online]. Available: https://doi.org/10.1023/A:1009749006768

[7] (2020, Oct.) UniTime Website. UniTime.org. [Online]. Available:
https://www.unitime.org/

[8] (2020, Oct.) Free Timetabling Software Website. [Online]. Available:
https://lalescu.ro/liviu/fet/

[9] (2020, Oct.) Opta Planner Website. Red Hat, Inc. [Online]. Available:
https://www.optaplanner.org/

[10] (2020, Nov.) OptaPlanner User Guide – Optimization algorithms overview. Red Hat,
Inc. [Online]. Available: https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#optimizationAlgorithmsOverview

41

https://docs.optaplanner.org/8.0.0.Final/optaplanner-docs/html_single/index.html#aPlanningProblemHasConstraints
https://docs.optaplanner.org/8.0.0.Final/optaplanner-docs/html_single/index.html#aPlanningProblemHasConstraints
https://docs.optaplanner.org/8.0.0.Final/optaplanner-docs/html_single/index.html#aPlanningProblemIsNPCompleteOrNPHard
https://docs.optaplanner.org/8.0.0.Final/optaplanner-docs/html_single/index.html#aPlanningProblemIsNPCompleteOrNPHard
https://github.com/AndreasFMueller/AutoSpr
https://www.unitime.org/papers/phd05.pdf
https://doi.org/10.1023/A:1009749006768
https://www.unitime.org/
https://lalescu.ro/liviu/fet/
https://www.optaplanner.org/
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#optimizationAlgorithmsOverview
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#optimizationAlgorithmsOverview

Bibliography 42

[11] (2020, Nov.) OptaPlanner User Guide – @PlanningId. Red Hat, Inc. [Online].
Available: https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#planningId

[12] (2020, Nov.) OptaPlanner User Guide – @InverseRelationShadowVariable. Red Hat,
Inc. [Online]. Available: https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#bidirectionalVariable

[13] (2020, Nov.) OptaPlanner User Guide – Cloning a solution. Red Hat, Inc. [Online].
Available: https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#cloningASolution

[14] (2020, Nov.) OptaPlanner User Guide – Define the constraints and calculate the
score. Red Hat, Inc. [Online]. Available:
https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#_define_the_constraints_and_calculate_the_score

[15] (2020, Nov.) OptaPlanner User Guide – Hill climbing. Red Hat, Inc. [Online].
Available: https://docs.optaplanner.org/7.46.0.Final/optaplanner-
docs/html_single/index.html#hillClimbing

https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#planningId
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#planningId
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#bidirectionalVariable
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#bidirectionalVariable
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#cloningASolution
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#cloningASolution
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#_define_the_constraints_and_calculate_the_score
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#_define_the_constraints_and_calculate_the_score
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#hillClimbing
https://docs.optaplanner.org/7.46.0.Final/optaplanner-docs/html_single/index.html#hillClimbing

	1 Introduction
	1.1 Objective
	1.2 Structure of the Report

	2 Problem Analysis
	2.1 Domain
	2.2 Problem Description
	2.3 The Exam Timetable Problem is NP-Complete

	3 Research
	3.1 Solution Strategies
	3.1.1 Requirements for Third-Party Software
	3.1.2 Constraint Solver vs. Existing Products

	3.2 Evaluation of Constraint Solver
	3.2.1 CPSolver (UniTime.org)
	3.2.2 Choco Solver
	3.2.3 OptaPlanner

	4 Solution
	4.1 Constraint Solver Choice
	4.2 Problem Modeling and Implementation with the OptaPlanner
	4.2.1 Model
	4.2.2 Constraints
	4.2.3 Score Function

	4.3 Architecture and Design
	4.3.1 Core System and API Application Architecture

	4.4 Visualization
	4.5 Data Import And Export
	4.6 Quality Assurance

	5 Results
	5.1 Simplifications of the Current Model
	5.2 Analyzing the Generated Exam Schedules
	5.3 Comparison with a Manually Created Exam Schedule

	6 Conclusion
	A Code Stats
	A.1 Lines of Code (LOC)
	A.2 Test Coverage

	Glossary
	Acronyms
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Bibliography

