Better Code Representation for Machine Learning

Raphael Jenni
OST Eastern Switzerland University of Applied Sciences
Supervised by Prof. Dr. Luc Blaser
ST 2022

Abstract

Using machine learning for code becomes more and more
common. Different approaches based on paths or BERT are
available. This paper focuses on improving parts of the input
vector by creating a more compact embedding. Furthermore,
it explores and discusses ways to reduce the amount of data
inserted into a model when working with code changes. The
results presented in this paper show that it is possible to
reduce the input data into a latent space, cutting it to half
the input data size, representing differences and similarities
between code paths in a very compact way while still main-
taining an accuracy of 99%. Moreover, it is shown that with
proper preprocessing, it is possible to reduce the amount of
data inserted into a code changes model by around 84%.

Keywords: Code Representation, Machine Learning, Pre-
processing, Change Detection

1 Introduction

Using machine learning for code becomes more and more
common. However, it has not yet reached the quality level of
other machine learning areas, such as natural language pro-
cessing or image recognition, mainly because of the limited
knowledge of best practices and tools for working with code
in a machine learning context. One of those areas where few
hard-proven methods are available is the representations of
code.

There are multiple studies regarding the representation of
source code. Some studies propose handling code as text and
with the BERT [DCL*] approach [FGT*, KMBS20, HPP*].
Other studies propose an approach of utilizing the AST in
combination with BERT [JZL*] or using paths extracted from
the AST [AZLY19, ABLY19, PSD17, PDK18].

This paper focuses on the approach based on Code2Vec
[AZLY19] and Code2Seq [ABLY19], and therein mainly on
better embedding parts of the input vector in a more compact
way and an investigation of the data at hand. Furthermore,
ways to reduce the amount of data inserted into a model
working with code changes are explored and discussed.

2 Problem Definition

Code2Vec [AZLY19] is a machine learning model that can
be used to represent code as vectors. Code is initially repre-
sented as a bag of paths, going from one leaf in the AST to
another. Such a path is called a code path and is represented
in the form of startTerminal,node|node]...,endTerminal. The start

and end terminals can be identifiers or operators but are
never an inner node, such as an expression or statement.
The extraction process is visualized in Figure 1. The training

|) |

Expression ThenStatement

ExpressionStatement

InfixExp|ression

operiator | [Leftoperand | | Rightoperand | J 1 l

y
x | 3

| [operator | [et ide | | R i
[|

y ‘)

£ £ \ |1

4 2
‘ 5 ‘Operatnr‘InfixExpressian‘ RightOperand ‘] ‘

> |Operator [InfixExpression| Expression If: Expressi i ide |0

Figure 1. AST to Code Path Example

process (visualized in Figure 2) then follows an embedding
step followed by a standard deep learning model with an
included attention mechanism. The upper part, colored in
blue, represents the embedding of the code paths. This part
requires thousands of parameters to be tuned, and involves
millions of labeled code samples for it to be learned correctly,
even for relatively small models. Doing this leads to pro-
longed training times and, depending on the goal, to a lot of
manual or partly manual labeling of the data. The embed-
ding is the part that should be improved and is the paper’s
primary focus. The goal is to find an effective embedding

Start End
Token M (Pt Token

Token Embedding: | ""Token Embedding

v
Path Embedding

Attention
: Mechanism

¢ R

Code Vector

ML Model

Figure 2. Visualization of Simplified Code2Vec Model

that can represent the whole or parts of such a code path in a
small and concise manner. And all this without the need for
manual labeling so that it can be applied easily to different
programming languages.

Besides finding an effective embedding for representing
code in general, another problem is describing code changes.
A code change is a change visible in a version control system.
However, while code changes contain a lot of helpful infor-
mation for learning purposes, representing such a change
for a machine learning model is not easy. The challenge here
lies in finding a way to represent the change, such that the
model includes information of what was before the change,
what was after the change, and what exactly did change. A
task that is sometimes difficult, even for a human. One major
factor lies in the amount of data that gets inserted into the
model to learn from. Therefore, the goal is to reduce the
amount of inserted data in order to focus on the essential
things and gain speed for training.

3 Inner Path Embedding

In Code2Vec, the inner path is embedded as part of the train-
ing process. This embedding step requires a lot of data for
it to be learned. The hypothesis was that pre-training the
embedding of the inner paths should yield a much better and
more compact representation of the paths itself. With the
resulting vector, the model should be able to interpret the
inner paths more efficiently and with higher precision.

The executed pre-training process of those inner paths
was realized using an autoencoder. The autoencoder’s task is
to encoded and compacted a path from 9 elements down to
4 and decoded it back to the original version. For controlling
outliers, a L1 regularization was added to the bottleneck layer.
To use this autoencoder in a model, the decoder part was
removed, and the bottleneck layer represented the embedded
path.

3.1 Results

The results of the inner path embedding were very promis-
ing, with an accuracy of 0.99 or 99% and a loss of only 0.04
on the test data. The embeddings were created based on 2272
Java files from ten major open source projects on GitHub,
totaling over 28 million paths. On closer inspection of ten
different paths, uniformly selected from different projects,
the model was able to embed different paths in the latent
space that could be used for similarity comparisons. Ten
paths were manually selected that were representative to
create a meaningful result, where eight out of the ten paths
were genuinely different. Adding more paths, some of them
less similar, just confirmed the result and are therefore not
further considered in this paper. Figure 4 shows the latent
space for the embedding of 8 different paths. The two plots
in the first two rows are the same type of paths with a slight
variation. The rest of the row pairs are different versions

Raphael Jenni

Input: Path

Encoder - ‘

s BOtHIENECK Layer

‘ Reshape ‘
Decoder - ¢

Output: Path

Figure 3. Inner Path Autoencoder Model - Simplified Visu-
alization

of the same types. Each of the paths is listed in Table 1.
Interestingly, paths of the same overall type can vary de-
pending on where the path ends. For example, plots 4 and 5
are both for-each loops, meaning loops in Java of the form for

(var item: items) {...}. However, plot 4 describes the variable
declaration in the for loop (var item in the example), and plot
5 illustrates a method call inside the loop declaration. With
regard to the loop structure, plot 5 is more similar to plot 7,
as they both contain a method call. This can also be observed
when comparing those two plots to each other. Both plots 5
and 7 start and end similarly and therefore are located close
to one another in the latent space. Visualizing the latent
space in the confusion matrix shown in Figure 5, based on
the cosine distance between the latent vectors, shows the
similarities very clearly. The closer to 1, visualized with the
yellow color, the more similar the two vectors are. Very dis-
similar vectors are closer to -1 and are visualized in a darker
color, the lowest being -0.4 and visualized in dark purple.
This similarity and dissimilarity are an important feature
of the inner path embedding. With this, the numbers of the
vector get a relevant meaning other than the tokenization id.
Furthermore, the embedding has a size that is half the size
compared to the original vector and, therefore, also reduces
the number of output parameters descending models need
to handle. Unfortunately, no other research in this area with
available data for comparison could be found.

Better Code Representation for Machine Learning

Label Path

If Statement 1
If Statement 2
Variable Assignment 1
Variable Assignment 2

Enhanced For Loop - expression call
For Loop - index declaration

For Loop - expression call

Method Declaration

Class + Method Declaration

O 00 N N U W= O H*

IF |statement|parExpression|expression|primary|IDENTIFIER

IF | statement |parExpression|expression|BANG

LONG |primitiveType|typeType|fieldDeclaration|variableDeclarators|variableDeclarator|ASSIGN
INT|primitiveType|typeType|localVariableDeclaration|variableDeclarators|variableDeclarator|ASSIGN
Enhanced For LOOp - item declaration FOR|statement | forControl |enhancedForControl |variableDeclaratorId|IDENTIFIER

FOR|statement | forControl|enhancedForControl |expression|methodCall|LPAREN
FOR|statement|forControl|forInit|localVariableDeclaration|variableDeclarators|COMMA

FOR|statement | forControl |expression|expression|expression|primary|IDENTIFIER
IDENTIFIER|methodDeclaration|methodBody|block|blockStatement|localVariableDeclaration|variableModifier|FINAL
IDENTIFIER|classDeclaration|classBody|classBodyDeclaration|memberDeclaration|methodDeclaration|IDENTIFIER

Table 1. Inner paths example with their corresponding type

0: If Statement 1 1: If Statement 2

2
-l -

Bl B2 B3 B4 Bl B2 B3 B4

2: Variable Assignment 1 3: Variable Assignment 2

2
0 _I-_ -

Bl B2 B3 B4 Bl B2 B3 B4

4: For-each Loop - item declaration 5: For-each Loop - expression call

2 |III IIII
0] —e— _ N———_ i . ———

-2

Bl B2 B3 B4 Bl B2 B3 B4

6: For Loop - index declaration

| 1 |

Bl B2 B3 B4 Bl B2 B3 B4

7: For Loop - expression call

8: Method Declaration

2 I .
[[—— -

9: Class + Method Declaration

Bl B2 B3 B4 Bl B2 B3 B4

o

IS

Figure 4. Path embedding of the ten paths of Table 1 plot-
ted according to their embedding vector at each of the four
positions.

Confusion Matrix 1.0
0 2 4 6 8
0 0.8
2 0.6
0.4
4
0.2
6
0.0
8
-0.2
-0.4

Figure 5. Confusion matrix of the 10 paths of Table 1. 1
means identical, and -1 means dissimilar.

4 Path Data Investigation for Code Change
Representations

In addition to the embedding of the paths, an in-depth data
investigation was done, trying to reduce the data when mutu-
ally comparing code changes. In our case, the data consisted
of all the code paths of files affected by the change. The
aim was to reduce the number of paths presented to the
model in order to reduce unnecessary data and speed up the
training process. Moreover, the granularity of the path bags
were investigated to analyze the impact of the granularity
on the output data. To improve the code representation even
further, sub-tokenization for the terminals was analyzed as
an additional preprocessing step. This sub-tokenization is
inspired by the Code2Seq model and is based on a paper by
Allamanis et al. [ABBS15]. Its objective is to separate word
combinations into separate tokens and embedding them as

Raphael Jenni

N . L . . Modification
All Path-Bags All Path-?}agf Subtokem'zahon Modified Paths-Bags Modified Pat'hs—]?ags Subtoken{zatlon Modlﬁcz{tlon + Subtokenization
+ Subtokenization Reduction + Subtokenization Reduction Reduction .
Reduction

of Paths 39,647,696 28,073,962
of Unique 161,332 28,122 83% 48,754 10,971 78% 70% 60%
Start Terminals
of Unique 159,987 28,417 82% 48,023 10,965 7% 70% 61%
End Terminals
of Unique
Inner Path Tokens 203 163
of Unique 142'368 23,310 84% 41,712 8,513 80% 84% 64%
Terminals >10 occurences

Table 2. Comparison of paths bags with and without filtering, and with or without subtokenization.

such. This has the potential to reduce the total number of
unique tokens and therefore reduces the required embedding
dimension.

When analyzing the data, it came apparent that the gran-
ularity of the initially chosen path bags was too high. The
bags consisted of all the paths in a single file, but changes
mainly affect only parts of a file. By always taking the whole
file into account, a lot of duplicate data is present in the
before and after version. This data is certainly needed to
create an exact understanding of what the code does, but
does not play that much of a role when only analysing the
changes. Furthermore, we might remove paths that give im-
portant context information if we just deduplicate paths. The
analysis showed that reducing the granularity from the level
of covering the whole version as a single bag of words to
the level of method level bags, enabled us to remove a large
portion of unchanged paths. Paths of methods that have not
seen any modification between the versions before and after
the code change have been removed, reducing the size of the
bag by 30%. Applying this filtering process, the number of
unique terminals in the bag even decreased by 83%.

The sub-tokenization of the terminals also yielded some
significant size reductions. Analyzing the number of differ-
ent terminals in the path bags with over ten occurrences
showed that the sub-tokenization resulted in a reduction of
84%. All the numbers and comparisons are shown in Table 2.
It is worth noting that due to the already high reduction
of only taking the modifications, the further reduction by
subtokenizing, shown in the last two columns, is minor. The
total reduction from no filtering to modification and subtok-
enization filtering falls between 93% and 94%.

5 Conclusion

Applying deep learning to code changes could have high po-
tential for various practical use cases in software engineering,
such as inferring bugs, clustering semantic changes, or trend
recognition. For this purpose, using paths for learning em-
beddings seems to a very promising approach, especially if
pre-processing them and removing duplications, although
other AST based approaches are equally possible. Using pre-
trained embeddings can reduce the data required for further
training and speed up the training process due to the fewer

training parameters present. Pre-training a model with an
autoencoder model eliminates the need for labeled data and
can therefore be done on a very large scale. The inner path
embeddings showed that it is possible to reduce the size by
50% of the input data while maintaining an accuracy of 99%
and a loss of only 4%. Although the inner path embeddings
reduce the path length by half, embedding the whole code
path is still required, as the start- and end-terminal need to
be included. Further research must be done to find a good
embedding that can represent the entire code path and the
whole bag of paths.

Working with code changes is very difficult because of
the not yet existent solid code representation. Applying pre-
processing techniques can reduce the noise around data and
push the process in the right direction. Filtering duplicate
paths between the two versions of a commit can already
reduce the amount of data by 30%. Sub-tokenization reduces
the number of terminals further by around 75%.

More research is required to realize meaningful and prac-
tical code analysis use cases with deep learning. There the
practical use of the here presented compacter embeddings
can be confirmed. Such a use case could be adjusting existing
models, like the Code2Vec and Code2Seq models, to use this
first embedding step and train the model with fewer data.
Using more advanced code understanding techniques, which
will undoubtedly improve in the near future, could lead to
new and different insights.

6 Related Work

As already mentioned in section 1 multiple studies regarding
the representation of source code based on BERT [DCL*] or
paths are available.

A study covers detecting one of three commit types with
deep learning [LY]. The approach uses a combination of
static AST analysis, keyword analysis and deep learning to
detect the type of commit. The authors also open sourced
the dataset used for training’.

The paper “CC2Vec: Distributed Representations of Code
Changes” by Hoang et al. [HKLL20] created a neural network
model that learns code representations of code changes with

Uhttps://zenodo.org/record/835534

https://zenodo.org/record/835534

Better Code Representation for Machine Learning

the help of the corresponding log messages. This represen-
tation is aimed to represent the semantic intent of a code
change. They tested the model on three tasks: Automatic
Log Message Generation, Bug Fixing Patch Identification, and
Just-in-Time Defect Prediction. Bug Fixing Patch Identification
is based on PathNet [HLO"] and should help backport bug-
fix patches to older versions. Just-in-Time Defect Prediction
should provide early feedback if a path has a defect.

Using more compact embeddings is a research task in
many areas of machine learning. Autoencoders are one possi-
bility, where besides the advantage of being an unsupervised
process, the resulting bottleneck layer is a compact repre-
sentation of the input data. Autoencoders have been first
introduced in the 1980’s [RHW86]. Nowadays, they are used
in countless different applications and in many forms. The
paper “Autoencoders” [BKG] covers and explains different
types of autoencoders.

References

[ABBS15] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles
Sutton. Suggesting Accurate Method and Class Names. 2015.

[ABLY19] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code.
In International Conference on Learning Representations, 2019.

[AZLY19] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
Code2vec: Learning distributed representations of code. Proc.
ACM Program. Lang., 3(POPL):40:1-40:29, January 2019.

[BKG]
[DCL*]

[FGT"]

[HKLL20]

[HLO*]

[HPP*]

(JzL*]

[KMBS20]

(LY]

[PDK18]

[PSD17]

[RHWS6]

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
Google, and A I Language. Bert: Pre-training of deep bidirec-
tional transformers for language understanding.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang,
and Ming Zhou. Codebert: A pre-trained model for program-
ming and natural languages.

Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall.
CC2Vec: Distributed Representations of Code Changes. 2020.
Thong Hoang, Julia Lawall, Richard J Oentaryo, Yuan Tian, and
David Lo. PatchNet: A Tool for Deep Patch Classification.
Marcus Hagglund, Francisco J Peifia, Sepideh Pashami, Ahmad
Al-Shishtawy, and Amir H Payberah. COCLUBERT: Clustering
Machine Learning Source Code.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu.
TreeBERT: A Tree-Based Pre-Trained Model for Programming
Language.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and
Kensen Shi. Learning and evaluating contextual embedding of
source code. 2020.

Stanislav Levin and Amiram Yehudai. Boosting Automatic
Commit Classification Into Maintenance Activities By Utilizing
Source Code Changes.

Michael Pradel, Tu Darmstadt, and Germany Koushik Sen. Deep-
Bugs: A Learning Approach to Name-Based Bug Detection.
147:25, 2018.

Michael Pradel, Koushik Sen, and T U Darmstadt. Deep learning
to find bugs. https://github.com/michaelpradel/DeepBugs, 2017.
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning internal representations by error propagation. 1986.

https://github.com/michaelpradel/DeepBugs

	Abstract
	1 Introduction
	2 Problem Definition
	3 Inner Path Embedding
	3.1 Results

	4 Path Data Investigation for Code Change Representations
	5 Conclusion
	6 Related Work
	References

