Code Preparation for Machine Learning

Converting code into vectors or sequences

Raphael Jenni
OST Eastern Switzerland University of Applied Sciences
MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta
Semester: Spring 2022

Abstract

Using machine learning for images, text, or audio has become
popular and relatively mainstream. On the other hand, using
machine learning for code is a rather new field. Only a few
commercial products are available, and the research is still in
its early stages. When trying to join this field, many different
topics need to be explored.

This paper aims to bring a software engineer or a program-
ming language researcher up to speed on the current state of
machine learning and show the possibilities of such technolo-
gies in respect to code. It covers code2vec, code2seq, CuBERT,
CoCluBERT, CodeBERT, TreeBERT, and DeepBugs AST Con-
text Representations, with their respective backgrounds and
list tools and points out available further research. It also
covers a few use cases and gives a practical example that
leads through the whole paper.

Keywords: Programming Languages, Pre-processing, Deep
Learning, Code2vec, Code2seq

1 Introduction

Applying Machine Learning (ML) for Images, Text, or Audio
has become normal. The available tools and the possibilities
for such use cases are plenty and very impressive. Not the
same can be said for applying ML when working with code.
In recent years a few products emerged like the GitHub Copi-
lot!, or TabNine?, both tools for code completion, or some
research projects like the OpenAI Codex® have been released.
All of them are very interesting and sometimes even useful,
but within a limited scope and for just a particular field. One
primary reason for that is that there is a lack of standards
or well-proven ways to handle code for machine learning
applications. Another reason is that gathering good code
samples is an arduous task. This paper details the current
state of representing code to learn from it and its pitfalls.

1.1 Overview

In order to explain the way code can be represented, some
basic concepts are needed. We start with an example, set the
goal we want to achieve, and gradually go into the underlying

Lhttps://copilot.github.com/
Zhttps://www.tabnine.com/
3https://openai.com/blog/openai-codex/

2022-05-30 09:00. Page 1 of 1-10.

ideas. The example is taken from the paper code2vec [AZLY19],
more on that later. The goal is to predict the function name
of a given function automatically.

For example, we want to input the following code snippet
(Listing 1) and want a model to predict that this functions
name is isPrime.

1 boolean f(int n) {

2 if (n <= 1) {

3 return false;

4 }

5 for (int i = 2; i *x i <= n; i++) {
6 if (n %1 ==120) {

7 return false;

8 }

9 3

0
1

1 return true;
1 3

Listing 1. isPrime Code Snipped

In order to achieve that, several problems come up:

First, there is quite a lot going on in the code. It takes an
understanding of the programming language, an understand-
ing of what a prime number is, and how it can be calculated.
It also requires the knowledge of natural language to give
that function a meaningful name. All requirements that are
pretty simple for a human, or at least for a reader of such
a paper, but not for a machine. This is what section 2 will
be about: Why is it hard for a computer to learn from code,
how is code different from natural language, and how does a
computer learn in general?

Second, how can text be handled? Text is not just a string
of characters or a sequence of words but has some underly-
ing structure. Nevertheless, some knowledge gained from
natural language processing (NLP) can be transferred when
working with code. More details on this topic is covered in
section 3: What do we understand by NLP, what are word
embeddings (word2vec), what are sequence to sequence models
(seq2seq), what is BERT, the model used in Google Search, and
how can we use them to learn from text?

Third, how can the computer take the code and make
sense of it? There are several methods to represent code,
but they differ in the amount of information they provide,
the speed of computing them, and how well they are suited
for specific tasks. What are the tradeoffs between them, and
what is the right one for our task? In section 4 we try to

https://copilot.github.com/
https://www.tabnine.com/
https://openai.com/blog/openai-codex/

pass on the knowledge to let you answer those questions for
yourself.

The focus will lie on code2vec and code2seq, as their ap-
proach is simple to understand, well generalizable, yet pow-
erful. In section 5 their details are described together with
the analysis of our isprime example.

If the paper has stirred your interest in this field, and you
want to find out more, or try it out for yourself, section 6
lists some tools, already implemented use cases, and further
research that has been conducted.

1.2 Assumed Knowledge

This paper assumes that the reader knows the basics of pro-
gramming language constructs and generally understands
machine learning.

2 Problem

As mentioned previously, it is hard for a computer to inter-
pret what a code snipped does. One may ask why, as un-
derstanding natural language is already possible and seems
much more complex than understanding code, with which
the computer already works with it. This question is valid,
however the issue is that the computer just runs code and
does not need to understand it. Code is to a computer what a
recipe or manual is to a human. It just describes what needs
to be done and how it needs to be done but does not state
what the whole program does. This dilemma is also present
for code verification or the famous halting problem [Tur37].
How can we verify that the code is doing what it is supposed
to do, or how can we be sure that it does not get stuck in
an endless loop without executing it? One can do that for
simple programs, but as soon as the code gets more compli-
cated or includes some recursion, it is impossible. If there is
an input involved, which is the case most of the time, one
would have to run the function with every possible input.
The possibilities of a function’s outcome are infinite.

Let’s go back to the reference to natural language. Google,
for example, seems to understand what people are searching
for. Therefore, it needs to understand the written text. This
assumption is valid, but behind its intelligence lies a massive
neural network trained on hundreds of millions of questions
and answers until it learned to “understand” the written text.
The word “understand” is written in quotes because neural
networks represent everything internally as numbers. Each
word or word combination is represented by a number. Each
connection is represented by a different number, and the
result is again a vector of numbers that just gets translated
back into a series of words. In order to understand code in
the same way, it also needs to be converted into numbers.

So we can think of code as being similar to natural lan-
guage but with a much better structure. This structure is
something we can and should take advantage of. The ques-
tion is just how. More on that later in section 4. Furthermore,

Raphael Jenni

lots of training data is needed. Luckily, as open-source soft-
ware has become more common, a lot of code is available
for free. The problem comes from the fact that the quality
of that code is unknown, and for many tasks, no accurate
labels are available.

3 Background in Natural Language
Processing (NLP)

Going back to Natural Language Processing (NLP), it is es-
sential to understand some basic functionalities. NLP is all
about learning and understanding the meaning of words and
phrases. A text consists of phrases, and a phrase consists of
words. In order for a computer to understand that, we first
need to convert the input into a sequence of tokens that can
then be converted into numbers. This is called tokenization.
A token is a predefined subsequence of the input. In its low-
est form, a token could represent a single letter. Therefore,
a word would be a sequence of such tokens. Taking each
letter as a token would undoubtedly be possible but would
likely not yield any beneficial results. The granularity would
be just too high. Usually, a token represents a word or a
so-called n-gram. An n-gram is a sequence of n words. For
example, the sentence 1 like dogs would be represented by the
three word tokens 1, 1ike, and dogs or the 2-grams 1 1like and
like dogs. Each token gets assigned a number, often according
to the order of appearance in the text or the number of oc-
currences. The final output of the tokenizing process is then
the sequence of numbers representing the input. With this
tokenized sequence, the computer can start learning. There
are several advanced text pre-processing and tokenization
methods, but those are not relevant for our use case.

3.1 Word2Vec

Tokenizing a sequence is often not enough to learn from the
input. The numbers are just identifiers. They do not have
any real connection to one another other than the natural
order of numbers. But even this order does not get used, as
it has no meaning in regards to words or sentences in the
context of natural language. We could convert the sequences
to a so-called one-hot-encoding, which is a sequence of binary
numbers. For each type of token, a column is assigned. The
number 1 being the first column, 2 the second and so on. Each
row then consists of zeroes except for the column of the
token. The one-hot-encoding is a straightforward encoding
that shows excellent efficiency for a small number of tokens.
However, it becomes much less efficient when the number of
tokens or, more generally “categories” increases, as it is very
sparse! and “wastes” a lot of memory. A typical maximum
number of categories is se. With this limit, using the one-hot-
encoding is not suited for encoding natural language as the
number of tokens is well beyond 50 tokens.

4Sparse: Meaning containing a lot of zero values.
2022-05-30 09:00. Page 2 of 1-10.

Code Preparation for Machine Learning

This is where embeddings come in. Embeddings are a way
to represent a sequence of numbers through learning the
connection between the tokens in a much smaller space. For
example, words such as “France”, “Spain”, and “Germany”
should be clustered closer together, than “France”, “Tree”, and
“Computer”. Embeddings are represented by an embedding
matrix of size vocabulary size X embedding dimension, the
embedding dimension usually ranging between 10 and 300.
This matrix is initialized randomly and slowly adjusts during
learning to represent the categories in the vector space. This
process is visualized in Figure 1. The interesting feature of

Woman

While Training Embedding Space

Figure 1. Visualization of the Initialization and Training of
the Embedding of “King”, “Queen”, “Man”, and “Woman”.

the closeness is that similar representations are clustered
closer to each other, and vector operations can be performed
on them. A famous example is called the “King - Man +
Woman = Queen” example. It must be noted that embeddings
need to be learned as part of the actual training process or
imported as already pre-trained. For example, in the case
of the “King - Man + Woman = Queen” example, the actual
training process could be assigning book titles to several
genres. The resulting embedding is just a nice by-product
that can later be used for other tasks in the same domain.
Although it is not uncommon that there is only interest in
this by-product.

By adding and subtracting the embedding vectors of the
words, the resulting vector will be very close to the word
“Queen”. This is visualized in Figure 2. A similar example
would be “Madrid - Spain + France = Paris”. This type of
converting words into vectors is called Word2Vec and are
widely used. [Gér19, Mig17] As embedding data is a very
common task in machine learning, all the major machine
2022-05-30 09:00. Page 3 of 1-10.

Man

King +

man

Queen

Very C\ose?ﬂ

King - Man + Woman
ing Evaluaton Embedding Space

Figure 2. Visualization of the Evaluation of the “King - Man
+ Woman = Queen” Example.

learning frameworks include this functionality out of the
box 567:8:9

3.2 Seq2seq

Another machine learning model type is the sequence to
sequence model, short seq2seq. Seq2seq models are used
to convert one sequence to another, as the name suggests.
In natural language processing, two primary use cases are
translating sentences from one language to another and “an-
swering” questions as, for example, Google Search does it.
Seq2seq models always work in two parts. First, we have an
encoder. An encoder is a network that takes a sequence of
input tokens and produces a sequence of hidden states. The
hidden states’ sequence does not have to be the same length
as the input. It can even consist of only a single number.
This hidden state then gets passed to the decoder, which
takes the hidden state and produces another sequence of
output tokens. This is often also called an encoder-decoder
architecture. In the example of language translation (see
Figure 3), the input would be a sentence in one language,
and the output would be the translation of that sentence in
another language. However, seq2seq models are not limited
to natural language processing; they can be used for any
sequence to sequence conversions, like for video, audio or
electrical signals. [Ala, Goo]

3.2.1 BERT. A model created by Google in 2018 is called
BERT [DCL*]. BERT stands for "Bidirectional Encoder Rep-
resentations from Transformers". The model is designed to
pre-train text representation that can easily be adjusted for
various tasks. One significant change that differentiates it

Shttps://keras.io/api/layers/core_layers/embedding/
®https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
"https://scikit-network.readthedocs.io/en/latest/reference/embedding.
html
8https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
“https://spark.apache.org/docs/2.2.0/mllib-feature-extraction.html

https://keras.io/api/layers/core_layers/embedding/
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
https://scikit-network.readthedocs.io/en/latest/reference/embedding.html
https://scikit-network.readthedocs.io/en/latest/reference/embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://spark.apache.org/docs/2.2.0/mllib-feature-extraction.html

The weather is nice!
. J

~+
Output
Encoder —State Decoder
[1.3,7
Input

D
(Das Wetter ist schén!)

Figure 3. Simplified seq2seq model for translating sentences
from German to English

from its predecessors is that the model reads text not just
from left to right but simultaneously also from right to left.
This is called bi-directional and can leverage the context on
both sides of a word. This type of reading is essential because
BERT was trained to gather an in-depth understanding of
the language it was supposed to learn. During training, 15%
of the tokens were masked, and it was BERT’s job to predict
the correct token. As this requires a deep understanding of
language, and not everything can be inferred from the start
of a sentence, this bi-directional property was a significant
leap forward. A second task BERT was trained on is to pre-
dict the following sentence when receiving an initial one,
called Next Sentence Prediction (NSP). This model was a
breakthrough in machine learning for NLP and is, together
with its descendants, now used in a wide range of applica-
tions. Google internally started to use BERT in its search
engine in 2019.

4 Understanding Code

Returning from the digression into NLP, we can now start to
look at the specifics of working with code in the context of
machine learning. This section will cover different possibili-
ties we have to work with code and explain how to interpret
and understand it.

4.1 Code as Natural Language

The simplest form to understand code is to look at it as
natural language. For example, the code snipped if (x > o)(y
= 1,3 can be tokenized as if, ¢, x, >, 0,), {, vy, =, 1, ;, }. For
those tokens, we can then create an embedding and try to
learn the meaning of the code. This requires a lot of data
to gain real insights, which can be very computer resource-
heavy, time-consuming, and therefore costly. Nonetheless,
two similar models apply the BERT logic for programming
languages.

Raphael Jenni

4.1.1 CuBERT. Code Understanding BERT, or short Cu-
BERT [KMBS20], is a model for code understanding based
on the previously covered BERT. It is built the same way as
the BERT model but with code instead of text. The model is
trained on 7.4 million python files and does not differenti-
ate the code and some text that may be in the code in the
form of comments. It aims to create a contextual embedding
of source code. To improve the model’s performance, six
additional tasks were performed:

e Variable-Misuse Classification tackles the use of an
incorrect variable in the place of a correct variable, that
may occur by carelessly copy-pasting code and forgetting
to rename variable occurrences. The task is to predict
whether there is a variable misuse in the function. This
task was proposed by Vasic et al. [VKM*] based on the
slightly simpler task by Allamanis et al. [ABK].

e The Wrong Binary Operation-task is a task by Pradel et
al. [PSD17, PDK138] for detecting whether a binary opera-
tor in a given expression is correct. An example would be
using i <= length instead of i < length in a condition. Neg-
ative training examples are automatically generated by
replacing some binary operators with another compatible
operator.

o The Swapped Operand task handles cases where
operands of non-commutative binary operators are
swapped. An example would be a case where list.size()< x
is wrongly expressed as list.size()> x.

o The Function-Docstring Mismatch-task handles cases
where the docstring attached to a function corresponds
to an other function. Something that can easily happen
when carelessly copy-pasting functions.

o The Exception Type-task is a classification task where a
missing exception token is predicted. The goal is to prevent
users from using generic, catch-all, exception handlers.

e The Variable-Misuse Localization and Repair-task is
based on the variable misuse task mentioned before. The
goal is to predict the location of a misused variable (lo-
calization) together with the correct variable that should
have been used (repair). It also covers the case where no
bug is present in the code, which gets reported as such.

In all the tasks, CuBERT outperformed previous methods by
a margin of 3.2% to 14.7%.

4.1.2 CoCluBERT. Based on CuBERT, Code Clustering
BERT, or short CoCIuBERT [HPP*] was created to cluster
source code. The goal is to group and categorize source code
that is not labeled by its functionality. This should enable
ML engineers to understand code better and provide the
possibility to easier find and manage relevant pieces of code.
Three different variants of CoCIuBERT were the result of
the paper [HPP*]. They were able to perform unsupervised
machine learning to group source code by functionality in
well-separated and compact clusters.

2022-05-30 09:00. Page 4 of 1-10.

Code Preparation for Machine Learning

4.1.3 CodeBERT. Another model called Code-
BERT [FGT*], similarly to CuBERT, is a model based
on the BERT architecture for programming languages.
It supports six programming languages and is different
from previous works by not using only bimodal data, but
also larger amounts of unimodal data. Bimodal data is
data that comes in pairs of two different types, such as
pairs of language-image, language-video, or in this case
natural language-programming language (NL-PL) pairs.
Unimodal data on the other hand is data that is standalone,
in this case code without any paired documentation. The
model was trained for two objectives: Masked Language
Modeling (MLM) and Replaced Token Detection (RTD).
MLM'’s objective is to predict the token that was masked
in the input sequence. RTD’s objective is to predict the
token that was replaced in the input sequence. The final
objective of CodeBERT is to provide a pre-trained model for
applications such as natural language code search or code
documentation generation.

Both CuBERT and CodeBERT are similar in the way they
apply the BERT approach to code understanding. CuBERT is
the first model that attempts to pre-train contextual embed-
dings for code, and CodeBERT is the first uni- and bimodal
pre-trained model. It will be interesting to see how these
two models compare on different tasks. Unfortunately, only
limited comparisons are available when writing this, and no
clear advantages of one over the other are evident.

4.2 Leverage Code Structure

Although treating code as if it were natural language works
in the setting for searching for code and connecting it with
natural language, the fundamental structure that code is built
upon is neglected. Code has a very well-defined structure,
and this structure is one of the significant benefits code has
over natural language when it comes to extracting informa-
tion out of it. A programming language is formally specified.
The grammar clearly and completely defines what the code
has to look like and how all the tokens relate to each other.
For example the grammar'’ (example in Listing 2) or the syn-
tax definition!! (example in Listing 3) for Java is available
on the internet.

1 IfThenStatement:
2 if (Expression) Statement

Listing 2. Example Java Grammar

Statement:

1

2

3 if ParExpression Statement [else Statement]
4

Listing 3. Example Java Syntax

1Java Grammar: https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.
html
Java Syntax: https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

2022-05-30 09:00. Page 5 of 1-10.

In the two examples, a pParExpression is the same as (Expression)
and clearly states that parentheses are expected to surround
the expression. Every statement is required to have an ex-
pression and at least one statement. Not trying to leverage all
this information would be a missed out chance. This brings
us to the next possibility for understanding code.

4.3 Code as a Graph

Code can be represented as graphs in many ways. One can
use static and dynamic techniques to analyze code automati-
cally and gather such graphs.

Static techniques examine an application’s source code
without running it. A control-flow graph (CFG), for example,
represents all paths a program can be traversed through dur-
ing its execution. This graph can contain loops and grow
very large, depending on the analyzed program. Based on
this, data-flow graphs, are graphs that show the flow of data
through the code. The vertices represent all the places where
variables get assigned or used. The edges represent the re-
lationships between the usages of these variables. Those
graphs can help to get a great understanding of the code and
its internal workings.

Dynamic techniques, on the other hand, examine an appli-
cation during runtime. To gather dynamic information, one
would need to execute code. Execution graphs, for example,
are condensed CFGs that describe the execution of the code
and show what parts have been executed and what parts
have not. Executing code is often not possible and, most of
the time, not wanted, as it can take a long time and increases
the complexity.

Code representations used for machine learning, there-
fore, use static analysis. The mentioned graphs contain much
information and would be extremely valuable for learning.
Representing a graph as a matrix would also be straightfor-
ward. The easiest way being an adjacency matrix. The big
problem they bring with them is that in order to construct
the graph, a lot of information needs to be computed. Doing
that for the scale needed for applying machine learning after-
ward is often not feasible and would be very time-consuming.
The time one often does not have. Therefore, those meta rep-
resentations are instrumental in traditional code analysis but
are not the best suited for machine learning. A more general
kind of graph would be the abstract syntax tree.

4.4 Abstract Syntax Tree (AST)

The Abstract Syntax Tree (AST) is, as the name might sug-
gest, a tree representation of the code. For example, the code
snipped if (x > @)(y = 1;} can be represented as AST as shown
in Figure 4. To create an AST, we need to know the gram-
mar and parse the written text according to it. Provided, the
written code is syntactically correct, the AST can easily be
created. Having all this structure and information allows us
to get an exact image of all the operations present in the
code and their order. The problem with this representation is

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

Expression

InfixExpression

IfStatement

Raphael Jenni

ThenStatement
ExpressionStatement

l Operator ‘ l LeftOperand ‘ lRightOperand‘ ﬂw
l > ‘ l X ‘ l 0 Operator ‘ l LeftHandSide ‘ l RightHandSide ‘
l
- Ly JL e]

Figure 4. AST Representation of if (x > e){y = 1;}

that it is not very easy convertible into a format that can be
used for machine learning. Keeping too much information,
the resulting vector will be vast and difficult to handle effi-
ciently. It is a tradeoff between keeping as much information
as possible and simultaneously creating the smallest possible
vector that a machine learning model can interpret.

4.4.1 DeepBugs AST Context Representation. The pa-
per “DeepBugs” [PSD17, PDK18] created a representation
where a context, consisting of the parent node, position in
the parent, siblings, uncles, etc., for each node is created.
Each node in the AST has an index by which it is referenced.
This context is then one-hot encoded. This approach works
for the purpose of finding simple bugs like, for example, the
previously mentioned "Wrong Binary Operation” task. It is
currently unknown if this approach would work for other
use cases as well. For an example, checkout Michael Pradel’s
DeepBugs repository on GitHub'? or have a look at the paper
"Machine Learning for Programming Languages" [Jen21].

As such, an AST can get rather large. There are many
columns in the vector, and therefore the resulting vector is
very sparse. The resulting vector’s size and the representa-
tion’s complexity may not be optimal for general use cases.
Handling all this data would result in an enormous model size
and memory footprint. Nevertheless, the DeepBugs project
is open source and still actively maintained and improved
when writing this.

4.4.2 Paths in the AST. A more straightforward solution
is to create a representation of all paths from the root down
to the leaves in the AST. Looking at Figure 4 again, such
a path could go from the root 1fstatement to the right-most
o. This would look something like: 1fstatement, ThenStatement,

ExpressionStatement, Assignment, RightHandSide, o, also visualized
in Figure 5. This path would then need to be tokenized into
a vector in order for it to be used in a machine learning task.
Such a representation would contain all the information and

Zhttps://github.com/michaelpradel/DeepBugs

IfStatement IfStatement

ThenStatement ThenStatement

ExpressionStatement ExpressionStatement

Assignment Assignment

RightHandside planisndsids

0 0

Figure 5. AST to Path Example (Root to Leaf)

could also be reversed back to the original AST, provided the
order is kept consistent. It is also effortless and fast to com-
pute. If nodes of the same type are represented by the same
number in the tokenization process, the resulting vector
could also be relatively small and, therefore, easy to handle.
By doing this, the resulting size is reduced, but any AST posi-
tion agnostic feature of the node is also removed. No matter
what we do, the primary issue with this representation is
that there is not much context information in a single path.
Only combined with other paths or when including unique
identifiers of the nodes context information can be extracted.
The following model uses an AST representation based on
this.

4.4.3 TreeBERT. Another BERT-based model is TreeBERT
[JZL*]. Both, CuBERT and CodeBERT have noted that using
the syntax tree to improve the understanding of code is a pos-
sible improvement the authors are interested in looking into.
This is precisely what TreeBERT did. TreeBERT represents
the AST as a set of paths and adds a node position embed-
ding. Just like CodeBERT, TreeBERT uses masking to learn
to understand the AST and infer missing parts of the AST. It
first converts the AST into a set of paths, with some nodes
being masked. It then transforms the paths into a vector

2022-05-30 09:00. Page 6 of 1-10.

https://github.com/michaelpradel/DeepBugs

Code Preparation for Machine Learning

l IfStatement ——————————————————
Expression ThenStatement
InfixExi ExpressionStatement
Operjator ‘l LeftOperand “ RightOperand‘ Assignment —l
> ‘ l X ‘ ‘) 0 ‘ l Operator ‘ lLeftHandSide‘ RightHandSide
F)]]]
‘ L - JL v | 0

‘ >jT;)perator?-‘;nfixExpression ‘ RightOperand ‘8 ‘

> |Operator |InfixExpression Expression |IfStatement | ThenStatement |ExpressionStatement |Assignment | RightHandSide | @

Figure 6. AST to Path Example (Leaf to Leaf)

representation and predicts the correct AST. This predic-
tion consists of inserting the missing/masked nodes, called
“Tree Masked Language Modeling” (TMLM), and putting the
nodes in the correct order, called “Node Order Prediction”
(NOP). The results presented in the paper for code summa-
rization and code documentation give TreeBERT the edge
over CuBERT, CodeBERT, and Code2Seq. The author plans to
improve the model and use TreeBERT for more and different
programming language-related tasks.

4.4.4 Relationship Paths in the AST. A similar ap-
proach to creating the paths from the root to the leaf,
proposed by Elon et al. in “A General Path-Based Represen-
tation for Predicting Program Properties” [AZLY] and later
used in “Code2Vec” [AZLY19], is to create paths from one
leaf to another. For the example of Figure 4, the path from
the left most leaf “>” to the right most lead “¢” would be:
>, Operator, InfixExpression, Expression, IfStatement, ThenStatement,
ExpressionStatement, Assignment, RightHandSide, 1. However, such
a path could also only go from the leaf “>” to the leaf “¢” in
the same subtree: >, operator, InfixExpression, RightOperand, @.
Both paths are visualized in Figure 6. As a side note; in the
original paper, each node in the path was also decorated
with the direction of the tree traversal, meaning “UP” or
“DOWN?” for going up or down the tree. In the second paper,
“Code2Seq” [ABLY19], this information was dropped. If
the paths are created for every leaf, all the relationships
between them are covered. As this may lead to an enormous
number of paths, it is advisable to only select paths that
have a limited length, meaning not going too far up the
AST. This, in turn, may reduce the amount of captured
information. We will now investigate this approach more
thoroughly.
2022-05-30 09:00. Page 7 of 1-10.

5 Code2vec and Code2seq

We want to focus on the code2vec and code2seq approaches,
as they are pretty simple to understand yet powerful and
with many possibilities. Furthermore, it does not require any
special pre-trained model and can be easily adapted to any
programming language. Let us start with code2vec, which
came first and builds the basis for the code2seq approach.

5.1 code2vec

Code2vec works by taking a subset of code that is syntacti-
cally correct and can be parsed into a complete AST (that can
be anything from a single line of code, a function, a whole
file, or theoretically up to an entire project) and converting it
into a bag of paths. A bag, also called multiset, of paths means
a list of paths, where the order of those paths does not have
any significance and duplicates are allowed. Those paths are
the relationship paths covered in subsubsection 4.4.4. Cover-
ing too big of a scope may reduce the accuracy as the paths
can only cover a limited range in the AST. It is therefore
advised to keep the scope as small as possible, which are
in this context single methods. The process of converting
the paths is visualized in Figure 7. It starts by splitting each
of the paths in the bag into three parts: the start token (left
violet box), the inner path (), and the end token
(right violet box). The two tokens get embedded by the same
embedding and are then combined with the separately em-
bedded inner path. This combination then gets fed into a
classical neural network (), with the only special
thing being the attention layer (red box) at the end. This
attention layer is used for adjusting how much attention a
single path in the bag gets. More on the attention mechanism
later in subsection 5.3. The output is a vector ()
that represents all the input paths, and therefore all the code,
as a single vector. [AZLY19]

Path

Start End
Token Ty (P Token

v v

fToken Embedding Token Embedding

\4
Path Embedding

Attention

ML Model Mechanism

! - :

Code Vector

Figure 7. Visualization of Simplified code2vec Model

5.2 Code2seq

Code2seq is the descendant of code2vec. The main differ-
ence is that code2seq uses a decoder in the end to output a
sequence instead of a single vector.

Internally some improvements are implemented, all of
which could also be applied to code2vec. The initial version
of code2vec is limited as an encoded inner path is needed in-
stead of a sequence of tokens. In code2seq, the inner path gets
encoded by a path encoder using an LSTM'? layer. Further-
more, all the start and end tokens get split into sub-tokens, as
suggested by Allamanis et al. [ABBS15], meaning that words
composed of multiple words get decomposed in their indi-
vidual words. For example, the token “ArrayList” gets split
into the sub-tokens “Array” and “List”. Those sub-tokens are
then encoded and summed to get the final encoded token.
This procedure reduces the number of different tokens that
need to be embedded, reducing the number of parameters
required and making the model, therefore, more efficient.
[ABLY19]

5.3 Attention Layer

An attention layer, also called alignment model, is a special
layer used to adjust the amount of attention a single path
gets. Same as for humans, this is the ability to focus on one
thing and ignore others which do not play any important
role in achieving the goal we are pursuing. For example, if
we want to differentiate a leopard from a tiger, we have to
direct our attention towards the dots or the stripes in the
fur. The attention layer does that by comparing the parts of
the model’s input with the model’s output and automatically

I3LSTM: Long Short-Term Memory, a particular machine learning type
specialized in remembering information of previous items and combining
it with the current.

Raphael Jenni

deducing weights according to the importance of a part. The
higher the weight, the higher is the importance of that part
regarding the output. This weight deduction is done over
time during the training of the model. Typically the weights
then get normalized to have a total sum of 1, meaning that
to each input, a percent value gets assigned according to its
importance. The output of the attention layer is a vector that
represents the amount of attention that each path gets and
the adjusted layer. This can significantly improve the model’s
quality and has a free extra benefit, namely “explainability”.
With the information on what input gets how much attention,
we can better understand and explain what part of the input
had the most impact on the output. For example, when doing
sentiment analysis of a text, meaning analyzing whether
the text is positive or negative, we can use the attention
layer to understand what part of the input had the most
impact on the output. More concretely, the sentence “I love
you” would have a higher amount of attention on the word
“love” than on the word “I” and can therefore easily predict
a positive sentiment. In the case of code2vec and code2seq,
the attention layer can give us insights about which path in
the bag most impacts the output. A visualization of this will
be discussed in the next section. [Gér19, BCB, LPM15, Ala,
Gra20]

5.4 Revisiting the isPrime-Example

Looking at the initially stated isPrime-example, in Figure 8
we see the AST and its paths together with the attention
each path gets. Looking at the picture, we can see that the

Method
Declaration

f i
IfStmt

Variable
Declaration
Expr
Ne Ato

int

Figure 8. AST representation of the function isPrime (List-
ing 1). The attention corresponds to the width of the path.
Grayed out nodes contain paths that are omitted for read-
ability. [AZLY19]

red path n, <=, for statement, block statement, return statement,
true had the most impact on the prediction of the name. If
we map this path directly to the code Figure 9, this path
mapping would probably not be your first choice as the n in
2022-05-30 09:00. Page 8 of 1-10.

Code Preparation for Machine Learning

boolean f(int n) { boolean f(int n) { boolean f(int n) {

if(n <= 1)¢ if(n<=1)¢ if(n<=1)¢
return false; return false; return false;
for (inti=2;i*i<=sn;i++){ for (inti=2;i*i<=n;i++){ for (inti=2;i*i<=n;i++) {
if (n%i==0){ if(n%i==0){ if (N % i==0){
return false; return false; return false;

} } }
} } }

return true; return true; return true;

}

Figure 9. The three most relevant paths of the isPrime ex-
ample visualized in the code.

the for statement has no big impact on the function return-
ing true, other that providing a termination condition. The
same goes for the second most important path (marked in
blue). For the third most influential path (marked in),
the importance can be seen. The relation between the int
in the iterator variable declaration of the for loop and the
i in the remainder calculation is essential. Simply with this
information, the possible options for what kind of function
this is can be narrowed down to fewer options.

6 Use Cases, Tools, and further Research

To recap, code2vec and code2seq are two slightly different
approaches to representing code in a way that can be used
for machine learning using AST paths. Code2vec outputs a
vector representation of the code, while code2seq outputs a
sequence of vectors representing the code. The use case of
predicting the method name is the use case used to show off
the approaches capabilities in the original paper. But many
other use cases can be thought of. Code2seq can be used
to create documentation for a given code snippet. Further
examples, presented in the paper and on their website!*1°,
are:

e predicting similar method names, for example, “size” is
similar to “count”.

e combine two methods into a single one. For example,
“equals” and “toLower” can be combined into “equalsIg-
noreCase”.

e analogies prediction, like the “king-man+woman=queen”-
example, for example, “receive” is to “download” as “send”
is to “upload*®.

6.0.1 astrid. There are already use cases outside the pa-
pers. The company JetBrains has created an Intellij IDEA'®
plugin called astrid!’ that uses the method name prediction
approach to suggest better names directly in your editor. The
goal is to make such tools better accessible to everyone and
improve the overall code quality. Unfortunately, the project

Yhttps://code2vec.org

Bhttps://code2seq.org

16A popular development environment (https://www.jetbrains.com/idea/)
https://github.com/ml-in-programming/astrid

2022-05-30 09:00. Page 9 of 1-10.

has seen no updates for three years at the moment of writing
this.

6.0.2 PSIMiner. PSIMiner'® is another plugin for Intelli]
IDEA crated by the company JetBrains. It is a tool for pro-
cessing “Program Structure Interface” (PSI) trees that are
responsible for parsing files and creating syntactic and se-
mantic code models to power many of the platform’s features.

Uet]

6.0.3 astminer. astminer!® is yet another tool by Jet-
Brains. It builds the basis to the two other tools, PSIMiner
and astrid, and also creates the bridge between them and
code2vec, or code2seq. It is a library for mining path-based
representations of code. Internally it has implementations
for many parses like ANTLR, GumTree, or Fuzzy, therefore
supporting a wide range of languages. It has configuration
options available like storage formats, label extractors, and
filters. It makes the process of extracting the initial path
representation much more trivial and straightforward. It is
either available as a standalone tool or as a library you can
access from Kotlin or Java. [KBBB19]

6.0.4 Search-Based Testing Framework for Deep Neu-
ral Networks of Source Code Embedding. In “A Search-
Based Testing Framework for Deep Neural Networks of
Source Code Embedding” [PLMH] the authors describe an
approach on how to make deep neural networks (DNNs)
more robust. The approach mutates the input with refac-
toring tools to create different but semantically equivalent
code snippets. Based on their tests, the robustness could be
improved by 23% on average. The paper covered code2vec,
code2seq, and also CodeBERT.

7 Conclusion

This paper has shown some current state-of-the-art machine
learning models and their backgrounds in previous machine
learning tasks, especially natural language processing. It also
tries to present the differences in an easily digestible way
with an incentive of being able to reason about what model
should be used for what. Furthermore, it should give valuable
insight and understanding of the models to the reader so
that it can be used as a starting point for their research.
Even though a lot is already possible, we are still in the
early stages of effectively using machine learning for pro-
gramming languages. There is a lot of research and work
going on, with the goal to improve the current solutions, find
new solutions for other use cases, and make those machine
learning models more accessible to everyone. With the rise
of open-source software, a lot of knowledge is available. It
just needs to be harvested and used in a helpful way for
everyone. In the end, the goal is to make the overall quality
of software more stable, more secure, and more consistent.

Bhttps://github.com/JetBrains-Research/psiminer
Phttps://github.com/JetBrains-Research/astminer

https://code2vec.org
https://code2seq.org
https://www.jetbrains.com/idea/
https://github.com/ml-in-programming/astrid
https://github.com/JetBrains-Research/psiminer
https://github.com/JetBrains-Research/astminer

References

[ABBS15]
[ABK]

[ABLY19]

[Ala]

[AZLY]

[AZLY19]

[BCB]

[DCL*]

[FGT*]

[Gér19]

[Goo]
[Gra20]

[HPP*]

[Jen21]

[Jet]

[z

[KBBB19]

[KMBS20]

[LPM15]

[Mig17]

[PDK18]

Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles
Sutton. Suggesting Accurate Method and Class Names. 2015.
Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud
Khademi. Learning to Represent Programs with Graphs.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code.
In International Conference on Learning Representations, 2019.
Jay Alammar. Visualizing a neural machine transla-
tion model (mechanics of seq2seq models with atten-
tion). http://jalammar.github.io/visualizing-neural-machine-
translation-mechanics-of-seq2seq-models-with-attention/.
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A Gen-
eral Path-Based Representation for Predicting Program Proper-
ties.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav.
Code2vec: Learning distributed representations of code. Proc.
ACM Program. Lang., 3(POPL):40:1-40:29, January 2019.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. NEU-
RAL MACHINE TRANSLATION BY JOINTLY LEARNING TO
ALIGN AND TRANSLATE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
Google, and A I Language. Bert: Pre-training of deep bidirec-
tional transformers for language understanding.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang,
and Ming Zhou. Codebert: A pre-trained model for program-
ming and natural languages.

Aurélien Géron. Book Review: Hands-on Machine Learning with
Scikit-Learn, Keras, and Tensorflow, 2nd edition. 2019.

Google. Overview - seq2seq. https://google.github.io/seq2seq/.
Alex Graves. DeepMind x UCL | Deep Learning Lec-
tures | 8/12 | Attention and Memory in Deep Learning -
YouTube. https://www.youtube.com/watch?v=AliwuCIvH6k&
ab_channel=DeepMind, 2020.

Marcus Hagglund, Francisco] Pena, Sepideh Pashami, Ahmad
Al-Shishtawy, and Amir H Payberah. COCLUBERT: Clustering
Machine Learning Source Code.

Raphael Jenni. Machine Learning for Programming Languages
- An Overview of Machine Learning for a Software Engineer.
2021.

JetBrains. Program structure interface (psi) | intellij platform
plugin sdk. https://plugins.jetbrains.com/docs/intellij/psi.html.
Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and Lei Lyu.
TreeBERT: A Tree-Based Pre-Trained Model for Programming
Language.

Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and
Alberto Bacchelli. Pathminer: a library for mining of path-based
representations of code. In Proceedings of the 16th International
Conference on Mining Software Repositories, pages 13-17. IEEE
Press, 2019.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and
Kensen Shi. Learning and evaluating contextual embedding of
source code. 2020.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning.
Effective Approaches to Attention-based Neural Machine Trans-
lation. pages 17-21, 2015.

Piotr Migda. king - man + woman is queen ; but why ? In-
tro. https://p.migdal.pl/2017/01/06/king-man-woman-queen-
why.html, 2017.

Michael Pradel, Tu Darmstadt, and Germany Koushik Sen. Deep-
Bugs: A Learning Approach to Name-Based Bug Detection.
147:25, 2018.

[PLMH]

[PSD17]

[Tur37]

[VKM*]

Raphael Jenni

Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. A
search-based testing framework for deep neural networks of
source code embedding.

Michael Pradel, Koushik Sen, and T U Darmstadt. Deep learning
to find bugs. https://github.com/michaelpradel/DeepBugs, 2017.
A. M. Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathe-
matical Society, s2-42(1):230-265, 1937.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and
Rishabh Singh. Neural Program Repair by Jointly Learning to
Localize and Repair.

2022-05-30 09:00. Page 10 of 1-10.

http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
http://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://google.github.io/seq2seq/
https://www.youtube.com/watch?v=AIiwuClvH6k&ab_channel=DeepMind
https://www.youtube.com/watch?v=AIiwuClvH6k&ab_channel=DeepMind
https://plugins.jetbrains.com/docs/intellij/psi.html
https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html
https://p.migdal.pl/2017/01/06/king-man-woman-queen-why.html
https://github.com/michaelpradel/DeepBugs

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Assumed Knowledge

	2 Problem
	3 Background in Natural Language Processing (NLP)
	3.1 Word2Vec
	3.2 Seq2seq

	4 Understanding Code
	4.1 Code as Natural Language
	4.2 Leverage Code Structure
	4.3 Code as a Graph
	4.4 Abstract Syntax Tree (AST)

	5 Code2vec and Code2seq
	5.1 code2vec
	5.2 Code2seq
	5.3 Attention Layer
	5.4 Revisiting the isPrime-Example

	6 Use Cases, Tools, and further Research
	7 Conclusion
	References

