Reproducing: Inferring Crypto API Rules from Code
Changes

Analyzing the taken approach, and discuss possible improvements

Raphael Jenni
OST Eastern Switzerland University of Applied Sciences
Supervised by Prof. Dr. Luc Blaser
FT 2021

Abstract

Analyzing big code to gain information to help a developer
get insights is a long-standing topic. With the help of big
code, the possibilities have increased dramatically. The paper
‘Inferring Crypto API Rules from Code Changes” [PZT*18]
attempts to use big code to detect crypto API usage changes
and derive rules from them. This paper aims to reproduce
its results, analyze its approach and provide directions on
building upon this idea.

To do that, we recap the paper’s approach and the results.
We then report on the findings and issues while implement-
ing the described approach. The overall impression is that
the paper is a good starting point for further research but
is not applicable for a real-world application with a large
codebase. The reproduced results are documented, and prob-
lems are discussed. We end the paper with three rough ideas
that are based on the paper’s approach: (i) “Enhance Code
Change Detection” where the code change detection method
should be extended to handle more cases of code changes.
(ii) “End-to-end Toolchain” where a toolchain is proposed
to introduce machine learning to have a system that detects
errors based on code changes from open source projects. (iii)
“Currently-Changing Dashboard” where a dashboard is pro-
posed that shows currently changing API usages/upgrades,
vulnerability and security issue fixes, and other changes to
a developer and also delivers insights on what parts of a
project need to be investigated.

Keywords: Code Analysis, Change Detection, Big Code

1 Introduction

This paper aims to reproduce the approach and findings of
the paper “Inferring Crypto API Rules from Code Changes”
[PZT*18]. It will start with a short recap of the different
approaches taken. It then continues with the reproduced
results, including all the findings made during the implemen-
tation. It concludes in the last section with a summary of the
results. Furthermore, based on the paper under investigation,
possible next steps are proposed.

2 Paper Recap

The paper “Inferring Crypto API Rules from Code Changes”
[PZT*18] describes an approach where changes from a ver-
sion control system get analyzed to find common Java Crypto
API usage changes. It does that by farming repositories from
GitHub, GitLab, and other sources, that contain usages of
the Crypto APL Those repositories are then converted into
versions for each file. Each version gets compared with the
one next in line, and an abstract representation is built. This
representation then builds the basis for filtering out unimpor-
tant changes that do not change anything of the functionality
like renamings or refactorings. The relevant changes then
get clustered by similarity. It is now the job of a human to
derive the rules from the clusters.

The following section summarizes the different sections
of the paper and describes the most important aspects of it
to create a baseline for the reader.

2.1 Code Abstraction

For applying static analysis, the code first needs to be parsed.
The parsing process is rather generic and nothing special.
The exciting part comes with reducing details by abstracting
the parsed AST into a DAG for each object present in the
code. Other than the AST, this DAG is independent of the
code structure. Inserting a line that, for example, prints out
some information does change the AST, but not the DAG.
As long as the order of the invocations is the same, the DAG
stays the same. Furthermore, the DAG focuses only on the
usages of a single object instead of the whole code structure.

public class AESCipher {

Cipher enc;,-deci Cipher

final String|algorithm = "AES"}

protected void setKeyAndIV(Key key, String iv) { l—)geﬂnstance Object creatior

try {
enc| = Cipher.getInstance(algorithm); s
enc.init (Cipher.ENCRYPT MODE,-key) ; (=
init

dec = Cipher.getInstance(algorithm);
dec.init (Cipher.DECRYPT MODE, key);
} catch (Exception e) {

ENCRYPT_MODE
} Key \

}
}

Figure 1. Conversion of Code into an abstract
DAG [PZT*18].

As visualized in Figure 1, the graph represents usages of
the field enc of type cipher. The DAG also includes all the used
parameters when interacting with the object.

2.2 Changes Paring

When having constructed all the DAGs for both versions,
the connection between each DAG from version 1 to version
2 is not clear (see Figure 2). Therefore, a mechanism for

public class AESCipher {
Cipher enc, dec;

public class AESCipher {
Cipher enc, dec; =
final String algorithm = 5 prote
b
protected void setKeyAndIV(Key key, String iv) {

try {
enc = Cipher.getInstance(algorithm);

KeyAndIV(Key key, String iv) {

enc.init(Cipher.ENCRYPT_MODE, Key)

dec = Cipher.getInstance(algorithm);
dec.init(Cipher.DECRYPT_MODE, key)

} caten (Exception e) {

ENCRYPT_MODE

IVParameterSpec

Figure 2. Analyzing the Code results in multiple DAGs. How
to find the matching ones [PZT*18]?

matching DAGs is needed. There is no bulletproof way to do
this, but the paper uses a method with a very high success
rate. This pairing is done by calculating the similarity of all
DAG combinations and selecting the match configuration
that results in the lowest overall score. This similarity is
calculated by taking the ratio of common nodes over the
total number of nodes.

2.3 Usage Changes

After having all the matched DAGs, the usage changes can
be investigated (see Figure 2). Extracting usage changes is
done by creating all paths along the DAGs and extracting the
longest path prefix. This prefix enables us to treat the rest
of a path with this specific prefix as a change. The process
is visualized in Figure 3. After having all usage changes, a
filtering step is executed to only look at the changes with
real usage changes and ignore changes like refactorings,
introducing a new object, or removing an object. The filtering
works by looking at the added and removed paths. If no paths
were added or removed, then no changes happened. If paths
were added but non were removed, the change introduced a
new API usage. If paths were removed but non were added,

Raphael Jenni

—Ciher _Cipher

getinstance

AES/CBC/PKCS5Padding

getinstance

IVParameterSpec

I.) <init>
I-) byte[]

Cipher etinstance AES

Removals

[_GMM—’ IVParameterSpec —» <init> —3» byte]]

Figure 3. Usage Changes Extraction Process [PZT*18].

the change removed an API usage. If the same path is present
multiple times, then the change is already covered by a prior
path and gets therefore ignored. Those four filtering steps
clear out most of the changes. When all the filters are applied,
only the relevant changes remain.

2.4 Usage Changes Clustering

At this point, the usage changes are clustered with an ag-
glomerate hierarchical clustering algorithm. The clustering
is done by putting all changes into the leaves of a binary tree
structure. The two most similar changes, meaning changes
with the nearest usage distance, get combined into a node
one level higher in the tree. This process is then done until
the tree is only one level deep. It is then the person’s job,
interested in the changes, to decide which level in the tree
to look at. The paper extracted 13 rules regarding security
issues for the Java Crypto APL. An example for such a rule
would be: “Use SHA-256 instead of SHA-1".

3 Reproduced Results

After recapping the paper’s approach, this section will cover
the reproduced results together with the challenges and prob-
lems faced.

There were two main issues when reproducing the re-
sults in the paper. First, no code has been made publicly
available. Second, the approaches taken by the authors were
described mainly in a very general and brief manner. Those
obstacles led to having to make many assumptions which in

Reproducing: Inferring Crypto API Rules from Code Changes

turn affected the results and their comparability. Neverthe-
less, all code written is based on best effort for the available
information and time available.

3.1 Code Abstraction

The original code was written in Python. For ease of use
when handling Java code, the rebuilt version is written in
Kotlin and leverages the Open]DK parser.

The OpenJDK parser is a private API, so it is not rec-
ommended for general use. The private nature also means
that no documentation is available. Nevertheless, after un-
derstanding its internals, the parser works excellent and
provides an easy and quick way to parse Java code. Based
on the parsed AST, the code abstraction could be derived.

Re-implementing the code abstraction described in the
paper was possible but is most likely not complete. Also,
in the end, only parts of the initially defined abstractions
were used to create the DAGs. For the abstraction part, the
examples presented in the paper could be reproduced. Other
code with a simple and flat structure also works relatively
reliable. The abstraction falls apart as soon as the code gets
more complicated or deeply nested.

Examples of cases where the abstraction is not specified
enough, and therefore are ignored or not explicitly handled
are described subsequently.

Nested method invocations. The code snipped example
.methodInvocation(asset.getWidth(), asset.getHeight());, consists of
a method invocation on “example” (.methodInvocation) and two
method invocations on “asset” (.getwidth and .getHeight). Based
on the paper, it is not clear if the DAG of method contains two
parameters of type 1nt or if it includes the method invocations
and their DAG as well. Furthermore, it most likely is different
for methods that return an object and methods that return
a primitive type. In the rebuilt version, for simplicity and
consistency, the method’s return type is taken. In the case of
the previous example, the resulting DAG would contain 1nt
twice as a parameter instead of actual values. In most cases,
the value is not constant in either way and would contain
nt as well.

Factory methods. Factory methods are covered in the
paper but are not described how to detect them. As factory
methods are a mere design pattern, there is no accurate and
100% reliable way to detect them. The only way is to decide
them based on the naming or some heuristic methods. The
implementation currently expects a factory method to be an
invocation where the return type is the same as the owner
type. This way of detecting works for the examples in the
paper but not for cases where a separate factory class is
used. When expanding upon the implementation of the code
abstraction, a better way for handling factory methods would
need to be developed.

Assignments on fields. Another case that is not docu-
mented are assignments on objects like, for example, object
.field = 15. The question is whether this field assignment is
handled as a method invocation. Most likely, all those as-
signments and similar operations, like +=, -= and so on, can
be viewed in a functional programming manner, and there-
fore as “conceptual” method invocations. This way, the DAG
can be constructed from them just as they would be from a
regular method invocation, and the contextual information
would be preserved.

3.2 Changes Pairing

The change pairing approach described in the paper works
well but is very slow and can get very memory intensive.
As mentioned before, matching the DAGs of two versions is
done by comparing each DAG with every other. Matching
like this is ok for a small number of DAGs, but as soon as
either the file gets too big or the number of accepted classes
(in the case of the paper, only seven crypto classes are taken)
gets too big, the matching becomes very slow. For n DAGs,
the matching is done in O(n?). Taking a file with 100 fields
and 40 GB available RAM, the matching terminates after
4.5 minutes with an out-of-memory exception. The memory
requirements are an issue regarding the references between
the AST and the DAGs of the current implementation. They
could be improved by removing the references or using a
different parser. Nevertheless, nearly 5 minutes and ongoing
for a single file is not applicable for a large number of files
with a wide range of accepted classes.

Filtering the usage changes based on the removal/addi-
tion paths works well. The described method can easily be
implemented, and the results reproduced. Refactorings, API
introductions, and removals are eliminated effectively by the
filtering mechanism, and only real usage changes remain.
Only the duplication detection can be slow in cases where the
number of remaining changes is significant, as every change
is compared with every other remaining change, resulting
in a runtime complexity of O(n?).

3.3 Usage Changes Clustering

Clustering the usage changes is described very briefly in
the paper. A distance measure (Levenshtein similarity ra-
tio [PZT*18]) is used in the paper to determine the similarity
of two changes and cluster the changes. The exact proper-
ties used to calculate the ratio are omitted in the paper. For
ease of implementation, for calculating the Levenshtein dis-
tance [AB09], the re-implementation takes the labels of the
nodes. Taking the labels is probably not the best way to do
it, but it is the closest to what is described in the paper.

Comparing all changes with each other is also a prolonged
process. For n changes, the matching is done in O(n®). There-
fore, using it on a large scale would most likely not be the
best way to do it.

Doing actual clustering requires data. Unfortunately, find-
ing data that matches all the criteria is not easy. Many of the
repositories used for the paper are not available anymore
or discontinued. Furthermore, the crypto API has changed
since the paper was released, and many of the method signa-
tures or classes are different. When checking the repositories
used in the paper, only 50 changes out of 25,000 diffs had
any usages of the crypto classes. However, none of those 50
changes had any instances of changes that were not filtered
out. Analyzing those 25,000 diffs took about 15 minutes, not-
ing that all changes were processed in sequence. Most of the
change processing was canceled after building the DAGs due
to not having any usages of the crypto classes. Taking all
projects that are still available gives a total of 140 projects
with a total of 170k files with ten versions each. Unfortu-
nately, analyzing those 1.7 million changes can not be done
due to the previously mentioned memory issues. Further-
more, it is not very computing-power efficient to analyze
that many changes and discard almost all of them because
they do not contain a change regarding the target API. The
results that were shown in the paper and are available un-
der http://diffcode.ethz.ch show that only 72k out of those
1.7 million changes even contain crypto API usages. Out of
those 72k changes, only 186 were left after the filtering step.
It is impressive what can be done with that little data, but
having more data at hand could probably yield even better
insights.

4 Conclusion

The paper presents a sophisticated approach for a new method
for code analysis with the help of code changes. Unfortu-
nately, the presented results are only suitable for specific
niches, as, for example, shown in the paper, for crypto APIs.
More specifically, the kind of analysis only works if the
changes one is interested in are small and on a minimal scale.
Expanding the analysis to a broader range or a larger volume
of changes is not feasible, as the runtime would be too big.
Nevertheless, there are many possible directions one can
go from this base approach. Following, three possibilities:

4.1 Enhance Code Change Detection

The code change detection with the DAG creation approach
for each object worked well to detect an APT’s usages. The
approach has too little context information for detecting
changes in general and does not cover any control flow logic.
For making it useful on a large scale, the generated DAGs
need to be extended. It would probably make sense to gen-
erate a combination of the base AST and the DAGs from
the paper. An example of such a combination for the code
snipped (Listing 1) is shown in Figure 4. The AST would
contain the control flow of the code and link to the DAGs for
each object. There could exist multiple DAGs for the same ob-
ject on different branches. This is visualized in the blue box.

Raphael Jenni

1 class CryptoUtils {

2 private String password;

3

4 public CryptoUtils(String password) {

5 this.password = password;

6 3

7

8 private Cipher getCipherInstance(CipherMode mode,

String key) {

9 Cipher ciph;

10 ciph = Cipher.getInstance("AES");

11

12 if (mode == CipherMode.ENCRYPT) {

13 ciph.init(Cipher.ENCRYPT_MODE, new

SecretKeySpec (key.getBytes()));
14 } else {
15 ciph.init(Cipher.DECRYPT_MODE, new
SecretKeySpec (key.getBytes()));

16 }

17

18 return ciph;

19 3}

20

21 public String encrypt(String text) {

22 var cipher = getCipherInstance(CipherMode.
ENCRYPT, password);

23 return cipher.encrypt(text);

24 3}

25

26 public String decrypt() {

27 var cipher = getCipherInstance(CipherMode.
DECRYPT_MODE, password);

28 return cipher.decrypt(text);

29 }

30

31 %

Listing 1. Basis for Figure 4

The two branches take a snapshot of the object before the
branching point and extend it from there (visualized in red
and green). Tracking the different states could be handled in
a context object that gets passed to each tree and extends the
parent’s context. This context would then contain all other
fields and variables with their respective values/reference to
the DAG, thereby containing the code’s data flow.

Creating hashes over the branches would give the ability
to identify changes quickly. The identification of the ob-
jects should also be made in two levels. The first level is
the object’s identifier, and the second is the object’s type.
This identification provides the basis to differentiate between
"real" changes or refactorings.

Having better code change detection would also offer a
better comparison of versions like seen in, for example, Git!.

4.2 End-to-end Toolchain

The paper "Deep Learning to Find Bugs [PSD17]" describes
an end-to-end toolchain for taking code, generating buggy
versions out of it, and then training a neural network with
it to identify that buggy code. The main drawback of this

Lhttps://git-scm.com/

http://diffcode.ethz.ch
https://git-scm.com/

Reproducing: Inferring Crypto API Rules from Code Changes

lthis::<Class> CryptoUtils } ClassContext:CryptoUtils
password
_[<VafDecl> password[0]: String } rrrrrrrrrrrrrrrr S p—
1 unknown
[}
4[<m||>: Void] !
MethodContext:getCipherinstance
<varDecl> password: Stiing ~ +--~~-
mode key ciph

Method> ge(Ci Sting] 0 | unknown | unknown | uninitialized

ENCRYPT
<varDecl> mode[0]: CipherMode IENCRYPT
<varDecl> key[0): String
<varDecl> cipher[0]: Cipher

ciph[1]

[Cipher<ciph>#0)

Cipher<ciph>#0 }

|

|

;t<in\1> getinstance: Cipher }
<varAssign> mode[1] <varDecl> algo: String = AES
T = L]
[<exit> ciph[1]

i r—
|<varAssign> ciph[1]: Cipher <val>: SecretKeySpec

<val>:
|<varinteraction> ciph[1] | Obiectsnapsnot

<varReq> key[0]: Stri
[<exit> ciph[1] varReq> key[0]: String

<varReg> key[0]: String

<methodlnvoc> init: void

<val> Int = 0 encaver uooe)

<val> Int = 1 pecaver wooe)

‘ <methodinvoc> getBytes: Byte[]

4{~M='hor > encrypt: String ethodinvocs ety es: Bytal
varDecl> text: String J
<methodinvoc> getCipherlnstance: Cipher]
s \
4{\"@'Re':"va:s.wi\ I String ‘
4[- Method> decrypt: String]
4{‘«;1\]!—1\ text: String J
—{- methodinvoc> getCiphernstance: Cipher]
<val>: Int = 1 ‘
<varReq> password[1]: String ‘

Figure 4. Combination of AST and DAGs, including its con-
text information and hash values.

approach is that the bad code needs to be generated artifi-
cially. Projects with a version control system contain many
corrections one could learn from, and there are also enough
open-source projects available. With good code change de-
tection that filters out bug fixes with high certainty, code
changes can be used to train a neural network. Leveraging
code changes would reduce the manual work that has to
be done, learn on actual bugs, and even suggest the correct
version in a second phase.

Figure 5 shows a possible toolchain. First code samples
need to be farmed (marked in). This is done by leverag-
ing the power of big code, meaning publicly available code
on GitHub, GitLab, Bitbucket, and co. Then the code versions
need to be extracted by stepping through the code history
and storing each version as a separate file. With this process
done, the training data is set. Next, the code needs to be

Fetch Code

|

Create all Historical Versions

l

Analyze Code

v

Filter unimportant changes

v

Build Representation

‘ Learn Changes ‘

Detect Errors in Code

Y

Suggest Fixes

Figure 5. End-to-end toolchain for detecting code changes
and suggesting fixes visualized

analyzed, and uninteresting or unimportant changes need to
be filtered out (marked in). The left changes can then
be put into a representation that can be persisted. With that
done, the creation and training of the model can be done
(marked in blue). Finally the model can be used to detect
errors for new code (marked in red) and possibly suggest
fixes (marked in violet).

Even though this approach seems straightforward, it has
some obstacles to overcome. Namely, smartly filtering out
uninteresting code changes as described in subsection 4.1,
and creating a good representation of the code that the net-
work can learn. Furthermore, the code analysis process needs
to be relatively fast to process all the data in a reasonable
time for the training phase and for being a practical tool one
wants to use.

4.3 Currently-Changing Dashboard

Having a dashboard for getting insights into your project’s
code has become more and more state of the art and is used
in many projects. They give you an overview of your code
quality and mark the hot spots, such as security issues, com-
mon bugs, or anti-patterns. Many of those insight tools, like,

for example, SonarQube? or the ETHZ spin-off DeepCode?,
now acquired by Snyk?, resulted among others from the pa-
per this one aims to reproduce, rely on more or less static
rules to find errors in your code.

By having a solid change detection system (similar to the
one in subsection 4.1), a dashboard could be developed that
uses the changes of the open-source community (Big Code)
to mark parts of a project that might need to be investigated.
The system would not necessarily say what needs to change
exactly but would indicate where to look. A change hotspot
might be a common library that changed its API or a new
language version with updated semantics. Furthermore, the
system could show connections between projects and show
wherein the code API upgrades, vulnerability and security
issue fixes, and other changes are happening. A system like

Raphael Jenni

that could show trends and give the community a better
feel for what is currently happening and where their focus
should be.

References

[AB09] Mikhail J Atallah and Marina Blanton. Algorithms and Theory
of Computation Handbook, Second Edition: General Concepts

and Techniques. 2009.
[PSD17] Michael Pradel, Koushik Sen, and T U Darmstadt. Deep learning

to find bugs, 2017.

[PZT*18] Rumen Paletov, Eth Zurich, Petar Tsankov ETH Zurich, Veselin
Raychev, Martin Vechev ETH Zurich, Petar Tsankov, and Martin
Vechev. Inferring Crypto API Rules from Code Changes. 2018.

Zhttps://sonarqube.org
Shttps://www.deepcode.ai
*https://snyk.io

https://sonarqube.org
https://www.deepcode.ai
https://snyk.io

	Abstract
	1 Introduction
	2 Paper Recap
	2.1 Code Abstraction
	2.2 Changes Paring
	2.3 Usage Changes
	2.4 Usage Changes Clustering

	3 Reproduced Results
	3.1 Code Abstraction
	3.2 Changes Pairing
	3.3 Usage Changes Clustering

	4 Conclusion
	4.1 Enhance Code Change Detection
	4.2 End-to-end Toolchain
	4.3 Currently-Changing Dashboard

	References

